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NOTES BY SHAWN HENRY IN 2007; REVISED BY PETER MAY IN 2011

1. Introduction

We begin with a definition and a theorem. Do not worry if you do not understand;
everything will be defined and explained in due course. Let K be a field.

Definition 1.1. An n-Topological Quantum Field Theory (n-TQFT) is a symmet-
ric monoidal functor F : n-Cob→ VectK.

Theorem 1.2. The category of 2-TQFTs is equivalent to the category of commu-
tative Frobenius K-algebras.

Proof. Left to the reader. �

Just kidding. Understanding this definition and proving this theorem will be
the main subject of this course, but we will meander on the way to getting there.
We need to understand at least three things. The category of n-TQFT’s, the
category of commutative Frobenius K-algebras, and the idea of an equivalence
of categories. The first is mostly topology, the second is algebra, and the third
is categorical language. However, we already need a fair amount of categorical
language to explain the first two. The theorem is a comparison of apples and
oranges, and it says that these apples and oranges are in some sense the same.
We will start with the categorical language that makes sense of such a comparison
between two kinds of mathematical things, but let’s first give a quick algebraic
definition that may make the target category at least mildly accessible.

Definition 1.3. An algebra A over a field K is a vector space A over K together
with a bilinear associative and unital multiplication A×A→ A, written (a, b)→ ab,
such that for a, b ∈ A and k ∈ K, (ka)b = k(ab) = a(kb).

After the introduction to category theory we will explain the relevant linear
algebra, using categorical conceptualization, and only after that will we turn to
topology and TQFT’s.

2. Categories

Definition 2.1. A category C is a collection of objects (X,Y,Z,...), denoted Ob(C),
together with, for each pair (X,Y) of objects of C, a set of morphisms (alias maps)
f : X → Y , denoted C(X,Y ), satisfying the following: For each object X of C there
is a given identity morphism 1X : X → X and for each triple (X,Y,Z) of objects
of C and pair of morphisms f : X → Y , g : Y → Z there is given a morphism
g ◦ f : X → Z. This is viewed as a composition law

◦ : C(Y,Z)× C(X,Y )→ C(X,Z).
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We require 1Y ◦ f = f = f ◦ 1X and h ◦ (g ◦ f) = (h ◦ g) ◦ f for any morphism h
with domain Z. Remark: We do not require that Ob(C) be a set; it may be a proper
class. If it is a set, we say that the category is small.

Example: The collection of all sets is a category denoted SET. Its morphisms
are functions.

Example: The collection of all groups is a category denoted GRP. Its mor-
phisms are group homomorphisms.

Example: The collection of all topological spaces is a category denoted TOP.
Its morphisms are continuous functions.

Example: A monoid is a set M with an associative binary operation and an
identity element. Note that in a category C the composition law ◦ on the set
C(X,X) is just such a binary operation with identity element 1X . Therefore a
monoid is a category with one object. A category can be thought of as a “monoid
with many objects”.

In any category, there is a notion of isomorphism. It answers the sensible version
of the question “when are two things the same”. The nonsensical version would
have the answer “when they are equal”. The sensible version interprets “things” to
mean objects of a category” and the sensible answer is that we think of two objects
as essentially the same when they are isomorphic.

Definition 2.2. A morphism f : X → Y in a category C is called an isomorphism
if there is a morphism g : Y → X such that g ◦ f = 1X and f ◦ g = 1Y .

Exercise: If a morphism f has a left inverse and a right inverse then it is an
isomorphism and the left and right inverses coincide.

Definition 2.3. A groupoid is a category in which every morphism is an isomor-
phism. Just as a monoid can be defined to be a category with just one object, a
group can be defined to be a groupoid with just one object. Similarly, a groupoid
can be thought of as a “group with many objects”.

3. Functors

A morphism of categories is called a functor.

Definition 3.1. Let C,D be categories. A functor F : C→ D consists of a rule that
assigns to each object X of C an object FX of D, together with, for each pair (X,Y)
of objects of C, a function F : C(X,Y ) → D(FX,FY ), written f 7→ Ff , such that
F (1X) = 1FX and F (g ◦ f) = Fg ◦ Ff .

Exercise: If f is an isomorphism in C, then Ff is an isomorphism in D.
Example: The collection of all small categories is a category denoted CAT. Its

morphisms F : C→ D are the functors. Remark: we insist that categories be small
for the purposes of this definition to ensure that we have a well-defined set and not
just a proper class of functors between any two categories.

Example: The abelianization of a group G is the group G/[G,G] where [G,G] is
the commutator subgroup, that is, the subgroup generated by the set
{ghg−1h−1 | g, h ∈ G}. Abelianization defines a functor A : GRP → AB where
AB is the category of abelian groups.

Definition 3.2. A functor F : C→ D is said to be faithful if the function

F : C(X,Y )→ D(FX,FY )
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is injective for every pair (X,Y) of objects of C.

Definition 3.3. A functor F : C→ D is said to be full if the function

F : C(X,Y )→ D(FX,FY )

is surjective for every pair (X,Y) of objects of C.

Definition 3.4. A functor F : C → D is said to be an isomorphism of categories
if there is a functor G : D → C such that FG is the identity functor on D and GF
is the identity functor on C.

Definition 3.5. A functor F : C → D is said to be essentially surjective if, for
every object Y of D, there is an object X of C and an isomorphism FX ∼= Y .

Definition 3.6. A functor F : C → D is said to be an equivalence of categories if
it is full, faithful, and essentially surjective.

Definition 3.7. A subcategory of a category C is a category that consists of some
of the objects and some of the morphisms of C; it is a full subcategory if it contains
all of the morphisms in C between any two of its objects. The skeleton of a category
C is a a full subcategory which contains exactly one object from each isomorphism
class of objects of C.

Proposition 3.8. The inclusion of a skeleton of C in C is an equivalence of cate-
gories.

Proof. We understand a skeleton to be a full subcategory, so the inclusion is full
and faithful, and it is essentially surjective by definition. �

4. Natural Transformations

Naturally, there are also morphisms of functors.

Definition 4.1. Let F, F ′ : C→ D be functors. A natural transformation

η : F → F ′

is a collection of maps ηX : FX → F ′X, one for each object X of C, such that the
following diagram commutes for each map f : X → Y in C:

FX
Ff //

ηX

��

FY

ηY

��
F ′X

F ′f

// F ′Y.

Definition 4.2. A natural transformation η is said to be a natural isomorphism if
each of the maps ηX is an isomorphism.

Example: A finite dimensional vector space V over K is naturally isomorphic
to its double dual DDV , where DV = Hom(V,K). That is, there is a natural
isomorphism Id→ DD on the category of finite dimensional vector spaces over K.

Definition 4.3. A functor F : C → D is said to be an equivalence of categories
if there is a functor G : D → C and there are natural isomorphisms FG → IdD

and GF → IdC. Note that an isomorphism of categories is an equivalence, but not
conversely.
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These notes were revised by somebody with a silly liking for theorems of the
following form.

Proposition 4.4. An equivalence of categories is an equivalence of categories.

That is, the two definitions of what it means for a functor to be an equivalence of
categories are equivalent. It is easy to show that if F is an equivalence of categories
in our second sense, then F is certainly full, faithful, and essentially surjective. The
converse requires a little work and a use of the axiom of choice that the fastidious
set-theoretically minded reader may find distasteful: the first step is to choose an
object G(D) in C such that FG(D) is isomorphic to D for each object D of D. The
second is to choose an isomorphism η : FG(D)→ D for each D. We then define G
on morphisms so as to make η a natural isomorphism by definition, using that

F : C(G(D), G(D′)) −→ D(FG(D), FG(D′))

is a bijection. For a morphism g : D → D′ in D, we define Gg : G(D) → G(D′) to
be F−1 of the composite

FG(D)
η //D

f //D′
η−1

//FG(D′).

The reader can see how composition must be defined in order to complete the proof.
Note that the proof of Proposition 3.8 is easy using our first definition of an

equivalence of categories, but not so easy using the second. Proposition 4.4 has
real force: it makes it easy to recognize equivalences of categories (in the second
sense) when we see them. We shall eventually construct a functor from the category
of 2-TQFT’s to the category of commutative Frobenius algebras over K and prove
that it is full, faithful, and essentially surjective.

5. The fundamental groupoid of a space

We illustrate the idea of translating topology into algebra by explaining the
fundamental groupoid. These quick notes will leave the diagrams presented in the
talk to the reader’s imagination.

We construct a functor Π: TOP → GPD, where GPD is the full subcategory
of CAT whose objects are groupoids. For a topological space X, the objects of the
category ΠX are the points of the space X. Let I = [0, 1] be the unit interval. A
path p : x→ y is a continuous map p : I → X such that p(0) = x and p(1) = y. Two
paths p and p′ from x to y are said to be equivalent if there is a map h : I × I → X
such that, for all t ∈ I,

h(t, 0) = x, h(t, 1) = y, h(0, t) = p(t) and h(1, t) = p′(t).

h is said to be a homotopy from p to p′ through paths from x to y. The set of
morphisms x → y in ΠX is the set of equivalence classes of paths x → y. For a
path q : y → z, the composite q ◦ p is defined by

(q ◦ p)(t) =
{
p(2t) if 0 ≤ t ≤ 1/2
q(2t− 1) if 1/2 ≤ t ≤ 1.

Define idx to be the constant path at x, idx(t) = x. Define p−1(t) = p(1− t). Com-
position is not associative or unital, but it becomes so after passage to equivalence
classes. Verifications that we leave to the reader (or the first chapter of “A concise
course in algebraic topology”1) show that ΠX is a well-defined groupoid. For a

1[95] at http://www.math.uchicago.edu/ may/PAPERSMaster.html
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map f : X → Y , we define Πf on objects by sending x to f(x) and on morphisms
by sending the equivalence class [p] to the equivalence class [f ◦ p]. Then Π is a
well-defined functor.

If we fix basepoints, we get a functor that is perhaps more familiar. The funda-
mental group of X at the basepoint x is the group π1(X,x) given by the morphisms
x → x in the groupoid ΠX. If we define TOP∗ to be the category of spaces X
with a chosen basepoint x and maps f : X → Y that preserve basepoints, f(x) = y,
then π1 gives a functor from based spaces to groups, called the fundamental group
functor. Its construction is the first step towards algebraic topology.

Exercise: By definition, π1(X,x), regarded as a category with a single object
x, is a full subcategory of ΠX. Show that if X is path connected, then π1(X,x)
is a skeleton of ΠX. Thus the essential information in ΠX is captured by the
fundamental group.


