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Abstract. This paper presents an accessible introduction to the mathemat-

ical theory of billiards. Specifically, it covers Masur’s criterion, a cornerstone

of many other crucial theorems in the field. This paper also covers two such
theorems: the Veech dichotomy and McMullen’s trichotomy, both of which

classify motion and topology on an important subset of tables - lattice sur-

faces. The paper is self contained and only a basic understanding of linear
algebra is assumed.
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1. Introduction

Despite being a relatively new field, the theory of billiard dynamics is very broad
and reaches into many different fields of mathematics and physics. It stems from
the game of billiards where a ball is hit on a table and bounces around. For
our purposes, the ball is a point mass subject to no friction or other forces, and
its motion follows the simple physical law of reflection: the angle of incidence is
equal to the angle of reflection. The theory studies the patterns, distribution, and
asymptotic dynamics of the ball’s path. It was quickly discovered that this field
has many applications in dynamical systems, group theory, and even in the physical
modeling of particle collisions. Usually this field of mathematics is approached from
the perspectives of dynamical systems and complex analysis, but in an effort to keep
this paper accessible and self-contained, we will be using group theory, geometry,
and a very limited amount of linear algebra.

We adapt the geometric definition of translation surface in terms of polygons
and edge identifications as presented by Wright [10].

Definition 1.1. A translation surface is a finite, compact, path-connected, union
of polygons in C where the edges of each polygon are identified in pairs such that
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paired edges are parallel and of equal length. A translation surface is an equivalence
class where two such collections of polygons are said to define the same translation
surface if one can be turned into the other using the following two transformations:

1) Cutting the polygon along a straight line, with those two sides being identified.
2) Translation and gluing of two identified edges.

Figure 1. An example of 2 equal translation surfaces by cutting
and gluing.

Definition 1.2. A singularity on a translation surface is a vertex of a polygon.
(These will be the pockets of our billiard table).

Definition 1.3. A saddle connection is a line segment going between two singu-
larities (which can be the same singularity) with no singularities on the interior of
the line segment.

Figure 2. A translation surface and its vital components

Definition 1.4. A billiard trajectory in a translation surface S is defined by a
point, or “billiard ball”, in S and a direction. The ball travels in that direction
until it reaches an edge, in which case, it continues at the identified point on the
identified edge.

Definition 1.5. A billiard trajectory in a translation surface S is considered to be
periodic if the ball returns to its original position and direction after some finite
amount of time.

Remark 1.6. As shown in the diagram below, the trajectory of a billiard ball on
a billiard table with rational angles can be represented by keeping the path of the
billiard ball straight, and reflecting the table over its edge (this process is called
unfolding). Furthermore, we can identify opposite edges and map the billiard ball
trajectory onto one table as several parallel line segments. From this arises the use of
translation surfaces. Although a trajectory in translation surface may look different
than in the billiard table, the trajectory’s important attributes are preserved.
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2. The gt transformation and Masur’s Criterion

Masur’s criterion [4] is a crucial gateway to many theorems in billiards, such as
the Veech dichotomy [7]. However, beforehand we must first introduce some key
terms and a unique transformation (gt) that can be applied to a translation surface
which yields interesting results.

Definition 2.1. For a translation surface S ∈ C, take arbitrary x, y ∈ S and let
Px, Py correspond to the path starting from x and y respectively, going in direction
P. P is uniquely ergodic if for all such x, y, for any rectangle Q perpendicular to
P, the average amount of time spent in Q by Px is equal to the average amount of
time spent in Q by Py. This is written as Px(Q) = Py(Q).

Definition 2.2. For our purposes, a transformation on a translation surface is an
area-preserving 2-by-2 matrix by which every vector of the translation surface is
multiplied. (Readers familiar with linear algebra will recognize that such transfor-
mations form the special linear group of 2-by-2 matrices with determinant ±1 also
known as SL(2,R).)

As shown below, the matrix (left)

[
2 1
1 1

]
is a valid transformation while the

matrix (right)

[
3 0
0 1

]
is not.

Definition 2.3. For all t ∈ R, define the geodesic flow gt as the transformation[
et 0
0 e−t

]
.

The matrices gt for varying t comprise the diagonal subgroup of SL(2,R) whose
elements commute under matrix multiplication. We study the group SL(2,R) and
it main properties in depth later on in the paper.
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We will now begin our approach to Masur’s criterion [4], following the proof
presented by Thierry Monteil [6].

Definition 2.4. A set of transformations (indexed by t ∈ R) on a translation sur-
face is recurrent if for some subsequence tn, {Stn} converges to some non-degenerate
S∞.

Remark 2.5. It may not be immediately clear how the set of transformations {gt}
on a surface S could ever be recurrent. After all, intuition tells us that S would just
be stretched out horizontally until it became a horizontal line. However, through
the process of rearranging as defined in Definition 1.1, for some cases, we can show
that {Sgt} returns periodically to its original form.

To demonstrate this, let us consider the unit square. If we apply the matrix

A =

[
2 1
1 1

]
,

the result can be cut and re-glued according to Definition 1.1 as shown. Thus, we
could apply A to our translation surface S: Sn = An(S) and for all n ∈ N, Sn = S.

Now consider if we rotated the unit square so that the vectors (1,
√
5−1
2 ) and

(1,
√
5+1
2 ) become horizontal and vertical respectively. Let us call this new transla-

tion surface U. Then, let us apply g
ln(

√
5+3
2 )

to U, and the result is identical to the

rotation of S1. Thus, we know that we can re-glue g
ln(

√
5+3
2 )

(U) so that it equals

U. Hence, since Sn periodically returns to its original form, so does gt(U).

For readers with closer familiarity with linear algebra, the rotation was to make
the eigenlines of A horizontal and vertical. We then let t be the natural log of the
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eigenvalue λ so that we obtain the matrix

gt =

[
λ 0
0 −λ

]
.

This is why gln(λ)(U) is equivalent to the rotated form of A(S).

Theorem 2.6 (Masur, [4]). Suppose that gt(S) is recurrent. Then the vertical
straight line flow is uniquely ergodic.

Proof. If gt(S) is recurrent, assume for contradiction that the vertical line flow is
not uniquely ergodic.

Then for some x, y ∈ S and some rectangle Q ⊂ S, the average amount of time
spent in Q by the paths of x and y (x(Q) and y(Q) respectively), are such that
x(Q) 6= y(Q).

Since S is recurrent, we know that for some subsequence tn, converges to some
non-degenerate S∞. We can then follow the paths of x and y as they converge to
x∞ and y∞. Then, let us assume that there is an open subset of S that does not
meet any singularities and which is big enough for us to draw a rectangle, R∞ ⊂ S∞
with x∞ and y∞ as opposite vertices. Then, we know that for n large enough, we
can still embed the rectangle Rn ⊂ Sn with opposite vertices defined by xn and yn
and whose dimensions (wn, hn) are very close to those of R∞.

Now, let us apply the transformation g−1tn on Sn and Rn inside it. The result is
S with a long rectangle R inside it. The height of the rectangle is etnhn.

Because R is just a transformation of Rn under gt, we can look at Rn as a
translation surface and then we know that its boundaries are preserved and so
thus, R can’t overlap itself.

The left side of the rectangle is the vertical path defined by x from time 0 to
etnhn. Likewise, the right side is the vertical path defined by y from time 0 to
−etnhn. Here, we can see that the difference between the time that the paths of x
and y spend in Q is at most the height of Q, hQ.
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Then, if we let T = etnhn, |x(Q)− y(Q)| ≤ limT→∞
hQ

T . Thus, as n approaches

infinity, limT→∞
hQ

T = 0 and so, |x(Q)− y(Q)| = 0 which is a contradiction.

Now let us consider the case where we can not find an open set into which we
can embed R∞. We know that S∞ is path-connected and non-degenerate. So,
we know that there exists a path from x∞ to y∞ surrounded by an open set not
meeting any singularity. Thus, there exists a finite sequence x1∞, x

2
∞, ..., x

k
∞ = y∞

such that the rectangles formed by any two adjacent elements of the sequence all
lie within the open set. Then, we can apply our previous reasoning to determine
that x1(Q) = x2(Q) = ... = xk(Q) = y(Q).

Thus, the straight line flow is uniquely ergodic.
�

3. Regarding group theory and the upper half plane

Before we can continue on to some important theorems that come as a result of
Masur’s criterion, we must first recall some definitions from group theory [1].

Definition 3.1. A group G is a set with some operation * such that:
1) If a, b ∈ G then a ∗ b ∈ G.
2) If a, b, c ∈ G then (a ∗ b) ∗ c = a ∗ (b ∗ c)
3) There exists some identity e, such that for all a ∈ G, a ∗ e = e ∗ a = a
4) For all a ∈ G, there is some b ∈ G such that a ∗ b = b ∗ a = e.

A subgroup of a group G is a group that is a subset of G closed under the same
operation.

Often, a group will be presented in the form (X,*), where X is the set and * is
the operation.

Definition 3.2. A group action * by some group G on a set S is a map G×S → S
such that:

1) for all s ∈ S, e ∗ s = s, and
2) for all g, g′ ∈ G, g ∗ (g′ ∗ s) = (gg′) ∗ s.

Definition 3.3. A stabilizer of an element of some set is the group of actions on
that element which return the same element. Thus, the stabilizer of a translation
surface S is the set of 2-by-2 matrices which when applied to S yields an equivalent
translation surface under Definition 1.1.

Definition 3.4. For some element s in a set S that is acted on by a group G, the
orbit Os = {g ∗ s|g ∈ G}

Theorem 3.5. The set of all transformations SL(2,R) is a group under matrix
multiplication.

Proof. Let M and N be transformations. Writing them as matrices

M =

[
m1 m2

m3 m4

]
, N =

[
n1 n2
n3 n4

]
,

their respective determinants must take the forms m1m4 −m2m3 = 1 and
n1n4 − n2n3 = 1 to satisfy the unit determinant condition.



BILLIARD DYNAMICS AND MASUR’S CRITERION 7

Taking their product of these transformations, we get

M ∗N =

[
m1n1 +m2n3 m1n2 +m2n4
m3n1 +m4n3 m3n2 +m4n4

]
.

Then the determinant of the product yields

(m1n1 +m2n3)(m3n2 +m4n4)− (m1n2 +m2n4)(m3n1 +m4n3)

= m1m3n1n2 −m1m3n1n2 +m2m4n3n4 −m2m4n3n4

+(m1m4 −m2m3) · n1n4 − (m1m4 −m2m3) · n2n3
Simplifying, we get M ∗N = 0 + 0 + 1(n1n4 − n2n3) = 1 and thus their product

M ∗N always belongs to SL(2,R.

We know that matrix multiplication is associative and thus, SL(2,R) is asso-

ciative. We also know that the matrix e =

[
1 0
0 1

]
is the identity matrix and that

since its determinant is equal to 1, SL(2,R) has an identity element.

From linear algebra, we know that any matrix with non-zero determinant, M
has some N such that M ∗N = N ∗M = e.

We then know the determinant of M ∗N takes the form

(m1n1 +m2n3)(m3n2 +m4n4)− (m1n2 +m2n4)(m3n1 +m4n3)

= m1m3n1n2 −m1m3n1n2 +m2m4n3n4 −m2m4n3n4

+(m1m4 −m2m3) · n1n4 − (m1m4 −m2m3) · n2n3 = 1.

Simplifying, we get: 1 = 0 + 0 + n1n4 − n2n3 and thus, N ∈ SL(2,R).

Thus, SL(2,R) is a group.
�

We will now define the upper half plane and its properties, using as reference
Garrett’s paper [3].

Definition 3.6. The upper half plane H is a subset of the complex plane C such
that for all x+ iy ∈ H, y > 0.

Definition 3.7. The Möbius transformation is the group action on z ∈ H by

SL(2,R) such that for M =

[
a b
c d

]
∈ SL(2,R),

M(h) =
az + b

cz + d
.

Theorem 3.8. The Möbius transformation is a group action.

Proof. 1)

e(z) =
z + 0

0 · z + 1
= z

2) Let g =

[
a b
c d

]
and g′ =

[
a′ b′

c′ d′

]
where g, g′ ∈ SL(2,R). Then we have that

gg′ =

[
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]
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and

gg′(z) =
(aa′ + bc′)z + ab′ + bd′

(ca′ + dc′)z + cb′ + dd′
.

Meanwhile, we have

g(g′(z)) = g(
a′z + b′

c′z + d′
) =

aa
′z+b′

c′z+d′ + b

ca
′z+b′

c′z+d′ + d
=

(aa′ + bc′)z + ab′ + bd′

(ca′ + dc′)z + cb′ + dd′

. So all that is left is to show that the transformation is indeed a map of the form
G× S → S defining a group action. �

Proposition 3.9. For any z ∈ H, and for any M ∈ SL(2,R),

Im(M(z)) =
Im(z)

|cz + d|2

where Im(z) denotes the complex component of Z.

Proof. We know:

Im(M(z)) = Im(
ax+ ayi+ b

cx+ cyi+ d
) = Im(

(ax+ b) + ayi

(cx+ d) + cyi
· (cx+ d)− cyi

(cx+ d)− cyi
)

=
(ax+ b)(−cy) + (cx+ d)(ay)

(cx+ d)2 + (cy)2
=

(ad− bc)(y)

|cz + d|2
.

Then, because ad− bc = 1, we get that

Im(M(z)) =
y

|cz + d|2
=

Im(z)

|cz + d|2
.

This also shows that the Möbius transformation is indeed a group action. �

4. Regarding the hyperbolic plane and lattice surfaces

We will now define the properties of lattice surfaces, which are the focus of the
Veech dichotomy and McMullen’s trichotomy.

Definition 4.1. A lattice Λ in SL(2,R) is a subgroup of the group SL(2,R) such
that for any z ∈ H there exists g ∈ Λ such that under the Möbius transformation,
g(z) ∈ F where F is a subset of H with finite area in the hyperbolic plane.

Definition 4.2. A lattice surface is a translation surface with a stabilizer Λ which
forms a lattice in SL(2,R).

Before we can use the above definitions, we must first discuss how geometry on
H (the hyperbolic plane) is defined.

Definition 4.3. An H-point is any point in H. A H-line is either a perpendicular
to the x-axis or a semicircle with its center on the x-axis.

The H-line is well-defined since any 2 H-points have one and only one H-line
passing through them.
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Figure 3. The line PR is a ray in H while the line PQ is a semicircle

Definition 4.4. Consider two H-points a,b. The always-positive H-distance d(ab)
is calculated as follows:

1) If the H-line passing through a,b is a line then d(ab) = ln( |ax||bx| ) where |ax|
and |bx| are euclidean distances to the x-axis.

2) If the H-line is a semicircle then d(ab) = ln( |ax1|·|bx2|
|ax2|·|bx1| ) where |ax1|, |ax2|, |bx1|, |bx2|

are the euclidean distances to the points x1, x2 where the semicircle intersects the
x-axis.

Remark 4.5. It is often helpful to imagine H as an infinitely large disc where the
x-axis is its circumference and going off into infinity in the positive y direction leads
you to the center of the disc.

These definitions are taken from the online resource [2].

Example 4.6. Here is an example of how area on H may be deceiving. As shown
below, let us take an area bounded by 2 vertical rays a distance x away and the
line y=1.

At first, the area seems to be infinite, but if we consider that as a and b go off
to infinity in the y-direction, so does the semicircle connecting them, and we get:

limy→∞ d(ab) = limy→∞ ln( |ax1|·|bx2|
|ax2|·|bx1| ). We know that as y approaches infinity, the

ratios ax1

ax2
and bx2

bx1
approach 1, so we then know: limy→∞ d(ab) = ln(1) = 0.

Thus, the area is actually pinched at the top and is bounded.
The proof that the area converges and is therefore finite requires a detour into

calculus and will therefore be omitted.
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Now that we have shown what it means for an area to be finite in H, we can
explore the simplest example of a lattice surface: the flat torus. The first part of
this next proof will follow Garrett’s exposition [3].

Definition 4.7. A flat torus is a translation surface whose underlying polygon is
a parallelogram.

The unit square defines a torus under the edge identifications (x, y) ∼ (x+1, y) ∼
(x, y+1) in R2, and under similar identifications, any parallelogram defines a torus.
From this arises the term flat torus.

Theorem 4.8. The flat torus is a lattice surface.

Proof. Let us consider the set formed by the composition C of the following matrices

: {A =

[
1 1
0 1

]
, B =

[
0 −1
1 0

]
}.

As shown in Prop. 3.10,

Im(M(z)) =
Im(z)

|cz + d|2
.

We also know that because ad−bc = 1 either c or d are non-zero. Then we know
that |cz + d| > 0 because |z| > 0.

Then, for any given z ∈ H and M ∈ S,

Im(M(z)) <
Im(z)

0
=∞.

Thus, because c, d ∈ Z there exists sup(Im(M(z)) and sup(Im(M(z)) = max(Im(M(z))).
Let zm be an element of the orbit of z such that Im(zm) = max(Im(M(z)))

(there will be an infinite amount of such elements, so we will choose an arbitrary
zm).

Returning to our original matrices, we see that An(z) = z + n because

An =

[
1 n
0 1

]
.

We also see that B(x) = −1/z.

Using matrix A, we can always make the real component of zm obey the in-
equality −12 ≤ Re(An(zm)) < 1

2 . It is important to note that this leaves Im(zm)
unchanged.

Then, let us assume that |zm| < 1. It follows that

Im(B(zm)) =
Im(zm)

|z|2
> Im(zm)

which is a contradiction, and thus, |zm| ≥ 1.

Thus, we get that for all z ∈ H there is some zm ∈ Oz such that
zm ∈ F = {x ∈ H|−12 ≤ Re(x) < 1

2 and |x| ≥ 1}.



BILLIARD DYNAMICS AND MASUR’S CRITERION 11

We know that if we take our flat torus T, and we apply A(M) (left) and B(M)
(right) as shown below, the result is equal to T. Thus, A and B are elements of
the stabilizer of T. Furthermore, since A(T)=B(T)=T we know that B(A(T )) =
A(T ) = T and thus, s(T ) = T for all s ∈ C. Thus, any s ∈ C is also an element of
the stabilizer of T.

Figure 4. Here we see how A (left) and B (right) stabilize any parallelogram.

Hence, the stabilizer of T forms a lattice in SL(2,R) and thus, the flat torus is
a lattice surface.

�

5. The Veech Dichotomy and McMullen’s Trichotomy

Now that we have seen an example of a lattice surface, we can move on to discuss
two theorems that arise as a result of Masur’s criterion.

Theorem 5.1 (Veech, [7]). For any lattice surface, in the direction of any saddle
connection, the straight line flow (or billiard ball path) is periodic. In all other
directions, the straight line flow is uniquely ergodic.

Proof. The proof essentially follows from Masur’s criterion, but it uses advanced
concepts from hyperbolic geometry including the relationship between lattice sur-
faces and tangent bundles over the moduli space of genus g compact Riemann
surfaces. We refer the reader to Wright’s doctoral topic proposal [9].
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�

Example 5.2. As proven previously, we know that the flat torus is a lattice surface.
It then follows by the Veech dichotomy that all trajectories in the direction of
saddle connections are periodic and all other trajectories are uniquely ergodic. This
result has been known for over 100 years and was one of the first theorems in
billiard dynamics (as a result of Weyl’s theorem [8]), however, it is still useful for
understanding the much broader Veech dichotomy, which covers all lattice surfaces
(such as the octagon, decagon, and many more).

Figure 5. The green and blue trajectories are periodic orbits in
directions of saddle connections. The purple trajectory is an ex-
ample of a uniquely ergodic path

Finally, we present a crucial theorem classifying lattice surfaces of genus 2.

Definition 5.3. An L-shaped table L(a,b) is a billiard table with side lengths as
pictured bellow.

Figure 6. c = (a+
√
a2 − 4b)/2
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Theorem 5.4 (McMullen, [5]). Let T be a billiard table which unfolds into a trans-
lation surface X of genus 2 (a lattice surface which, when its identified edges are
glued, forms a surface with two holes). Then X is a lattice surface if and only if T
is equivalent to

1) a table tiled by congruent triangles of angles (π/2, π/3, π/6) and (π/2, π/4, π/4);
2) the triangle with angles (π/2, 2π/5, π/10); or
3) the L-shaped table L(a,b) for some a, b ∈ Z

Remark 5.5. Two billiard tables are equivalent if they unfold to the same translation
surface.

To demonstrate this we will look at a canonical example.

Example 5.6. As shown, the regular decagon falls into the second category, and
since it is a genus 2 surface after gluing identified edges, we know that it is a lattice
surface.
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