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Abstract. In this paper, we summarize the classification of representations
of semisimple lie algebras and look at properties of semisimple Lie algebras.

We present the structure theory briefly and then state the theorem of highest

weight for semisimple Lie algebras.
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1. Basic Preliminaries

Definition 1.1. A vector space g over a field F is called a Lie algebra with a
map g× g→ g, (X,Y ) 7→ [X,Y ] such that:

(1) (X,Y ) 7→ [X,Y ] is biliniear.
(2) [X,Y ] + [Y,X] = 0.
(3) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (Jacobi identity).

Definition 1.2. An ideal I of a Lie algebra g is a subalgebra of g such that
[X,Y ] ∈ I for all X ∈ I and Y ∈ g.

Definition 1.3. A simple Lie algebra is a Lie algebra that is nonabelian and
contains no nonzero proper ideals. A semisimple Lie algebra is a Lie algebra
that is a direct sum of simple Lie algebras.

A real or complex Lie algebra is a Lie algebra over R or C respectively. We denote
the n2 dimensional vector space over C consisting of all n × n complex matrices
gl(n,C). It can be confirmed by simple calculation that gl(n,C) is a Lie algebra
with the bracket defined with normal matrix multiplication and addition:

∀X,Y ∈ gl(n,C), [X,Y ] = XY − Y X.

Similarly, if V is a vector space, we define gl(V ) to be a Lie algebra of all linear
endomorphisms of V , where

∀X,Y ∈ gl(V ), [X,Y ] = X ◦ Y − Y ◦X.
1
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Definition 1.4. The complexification of a real Lie algebra g is a vector space
g⊕ g, denoted as g + ig. Its elements are of the form of X + iY , where X,Y ∈ g.
It is a Lie algebra with the bracket induced from that of g:

∀X,Y, Z,W ∈ g, [X + iY, Z + iW ] = ([X,Z]− [Y,W ]) + i([Y,Z] + [X,W ]).

That the induced Lie bracket satisfies 1.1 can be shown by simple calculation.

Definition 1.5. If g is a Lie algebra, then a subalgebra of g is a subspace of g
that is closed under the Lie bracket.

Definition 1.6. Given two Lie algebras g and g′, a Lie algebra homomorphism
is a linear map φ : g→ g′ such that φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ g.

Definition 1.7. Let g a Lie algebra and V a vector space. A representation of
g on V is a Lie algebra homomorphism

ρ : g→ gl(V )

such that
ρ([X,Y ]) = ρ(X) ◦ ρ(Y )− ρ(Y ) ◦ ρ(X)

for all X,Y ∈ g.

Definition 1.8. Given a representation ρ of g on V as above, let a subspace W ⊂ V
be closed under the action of g, i.e.,

ρ(X)w ∈W
for all X ∈ g, w ∈W . Then the map

ρ|W : g→ gl(W )

such that X 7→ ρ(X)|W is a subrepresentation of ρ. The subrepresentation is
said to be proper if it is both nontrivial (ρ(X) 6= idV for some X ∈ g) and W ( V .

Definition 1.9. An irreducible representation is a nonzero representation with-
out any proper subrepresentation.

Definition 1.10. Let Π be a representation of g acting on the space V and Σ
be a representation of g on the space W . A linear map φ : V → W is called an
intertwining map of representations if φ(Π(A)v) = Σ(A)φ(v) for all A ∈ g and
v ∈ V . If φ is invertible, φ is said to be an equivalence of representations. If V and
W are isomorphic, then the representations are said to be equivalent.

Given a Lie algebra g, we can define a map adX : g → g, X ∈ g such that
Y 7→ [X,Y ]. Thus, ad : g→ gl(g), X 7→ adX . We can see that ad is a representation
of g on gl(g). We call this the adjoint representation of g.

Definition 1.11. Given a Lie algebra g, the Killing Form B on g is a symmetric
bilinear form given by

B(X,Y ) = tr(adX ◦ adY ),∀X,Y ∈ g.

The computation of B might be unclear from its definition. But it can be
calculated explicitly using the structure constants. We choose a basis {ei} of g.
The structure constants of g, fkij , are defined by

[ei, ej ] =
∑
k

fkijek.
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Let {ei} be a basis of g. Then, we can see that

adei ◦ adej (ek) = [ei, [ej , ek]] =
∑
m

∑
l

fmil f
l
jkem

holds. Thus, by the definition of B,

B(ei, ej) =
∑
k

∑
l

fkilf
l
jk

holds. Since B is a bilinear form, we can compute B(X,Y ) for all X,Y ∈ g from
this. One important property of the adjoint representation is that adX is skew
hermitian with respect of B, i.e.,

∀X,Y, Z ∈ g, B(adX(Y ), Z) = −B(Y, adX(Z)).

This can be verified by simple computation.

Definition 1.12. A compact real Lie algebra p is a real Lie algebra such that
its Killing form is negative definite. If g is a complex semisimple Lie algebra, then
a compact real form of g is a real subalgebra p of g that is a compact real Lie
algebra, and such that the complexification of p is g.

It turns out that every complex semisimple Lie algebra g has a compact real
form. In this paper, we will only consider Lie algebra that is the complexification
of some simply-connected compact real subalgebra of gl(n,C). In particular, when
g is used without context in this paper, it is a Lie algebra that can be written as
p + ip, where p is a simply-connected compact real subalgebra of gl(n,C).

2. Cartan subalgebra

Definition 2.1. A Cartan subalgebra h of g is a complex subspace of g with
following properties.

(1) For all H1, H2 ∈ h, [H1, H2] = 0.
(2) For all X ∈ g, if [H,X] = 0 for all H ∈ h, then X ∈ h.
(3) For all H ∈ h, adH is diagonalizable.

In other words, a Cartan subalgebra of g is maximal commutative in g, and all
adH ’s are simultaneously diagonalizable. The following theorem provides us the
existence of a Cartan subalgebra for any g and a way to compute it. The proof is
nontrivial and is omitted.

Theorem 2.2. Let p be a compact real form of g, and let t be any maximal commu-
tative subalgebra of p. Define h ⊂ g to be h = t+ it. Then, h is a Cartan subalgebra
of g.

It is also possible to prove that every Cartan subalgebra of g is in this form,
and all of them have the same dimension. Thus we can just choose any Cartan
subalgebra of g to represent it. From now on, if h is used without context, it is the
fixed Cartan subalgebra of g.
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3. Structure Theory

Definition 3.1. A root of g is a nonzero linear functional α ∈ h∗ such that

∀H ∈ h, [H,X] = α(H)X

for some eigenvector X ∈ g. We call X a root vector. The root space gα is the
set of all root vectors of α.

We want to examine the structure of g more throughly. We can decompose
g into h ⊕ h⊥. Since adH ’s for all H ∈ h are simultaneously diagonalizable, its
eigenvectors form a basis of g. Since h is maximal commutative, the eigenvectors
with eigenvalue of 0 span h. Other eigenvectors span the root space. Therefore, the
following theorem holds.

Theorem 3.2. (Cartan Decomposition) g can be decomposed as a direct sum
as follows:

g = h⊕
⊕
α∈R

gα,

where R is the set of all roots.

Now we can prove that the Killing form B on g is an inner product when re-
stricted to h. The only thing that needs to be shown is that B is nondegenerate on
h. This can be done by observing that α(T ) is pure imaginary for all root α and
T ∈ t. This comes from the nature of construction of h (Theorem 2.2).
We can also show that if α is a root, then −α is also a root. Let X = X1 + iX2 ∈ g
be a root vector of α. Using that α(H) is a pure imaginary eigenvalue of adH if
H ∈ p ⊂ h, one can see that −X1 + iX2 is a root vector of −α. Thus −α is a root.

Proposition 3.3. If α is a root, we can find Xα ∈ gα, Yα ∈ g−α, Hα ∈ h such that

[Hα, Xα] = 2Xα

[Hα, Yα] = −2Yα

[Xα, Yα] = Hα

Proof. We take X = X1 + iX2 to be any nonzero element of gα (X1, X2 ∈ t). Let
Y = −X1 + iX2. Then Y ∈ g−α. Let H = [X,Y ]. Using the Jacobi identity, it can
be shown that adH′([X,Y ]) = 0 for all H ′ ∈ h. Thus H ∈ h. Now, normalize X,Y,
and H:

Hα :=
2

α(H)
H,Xα :=

√
2

α(H)
X,Yα :=

√
2

α(H)
Y

Direct calculation shows that the commutation relations hold. �

Definition 3.4. A base is a set of roots ∆ such that

(1) ∆ is a basis of h.
(2) Any root α can be expressed as

α =
∑
i

niαi, αi ∈ ∆

where ni’s are integers either all ≥ 0 or all ≤ 0.

The elements of ∆ are called the positive simple roots.

To continue our discussion, we admit the following proposition without proof.
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Proposition 3.5. For any set of roots, a base ∆ exists.

Definition 3.6. µ ∈ h is an integral element if µ(Hα) is an integer for all root
α. An integral element µ is a dominant integral element if µ(Hα) ≥ 0 for all
positive simple root α’s.

Definition 3.7. Let π be a finite-dimensional representation of g on a vector space
V . We call µ ∈ h∗ a weight if there exists a nonzero v ∈ V such that

π(H)v = µ(H)v

for all H ∈ h. Here, v is called a weight vector for the weight µ, and the set of
all vectors satisfying the equation is called the weight space with weight µ. The
dimension of the weight space is called the multiplicity of the weight.

Let v be a weight vector with weight µ and Xα is an element of the root space
gα. Since [H,Xα] = α(H)Xα,

π(H)π(Xα)v = [π(Xα)π(H) + π([H,Xα])]v = (µ+ α)(H)π(Xα)v.

Thus, either π(Xα)v is zero or a weight vector with weight µ + α. From this, the
following theorem holds.

Proposition 3.8. Every finite-dimensional representation (π, V ) is the direct sum
of its weight spaces.

Proof. The complete reducibility of g allows π to decompose as a direct sum of
irreducible representations, thus we can only consider the case when π is irreducible.
Let U be a subspace of V spanned by all weight vectors. U is invariant under π(H)
for all H ∈ h by the definition of weight, and we have just shown that it is also
invariant under π(Xα) for all X ∈ gα. By the Cartan decomposition of g, U
is invariant under the action of g. Since π is irreducible and U 6= {0}, U = V
holds. �

Definition 3.9. Let µ1, µ2 ∈ h∗. We say that µ1 is higher than µ2 if there exist
non-negative real numbers a1, . . . , ar such that

µ1 − µ2 =
∑
i

aiαi

where ∆ = {α1, . . . , αr} is the set of positive simple roots. If π is a representation
of g, then a weight µ0 for π is said to be a highest weight if µ0 is higher than any
other weights.

4. Theorem of Highest Weight

The ultimate goal of this paper is to prove the following statements for semisimple
Lie algebras.

(1) Every Irreducible representation has a highest weight.
(2) Two irreducible representations with the same weight are equivalent.
(3) The highest weight of every irreducible representation is a dominant integral

element.
(4) Every dominant integral element occurs as the highest weight of an irre-

ducible representation.

Definition 4.1. (π, V ) is a highest weight cyclic representation with weight µ0 if
there exists v 6= 0 in V such that
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(1) v is a weight vector with weight µ0.
(2) π(Xα)v = 0 for all positive roots α.
(3) The smallest invariant subspace of V containing v is V .

From the definition, it follows that π has a highest weight µ0, and the weight space
of µ0 is one-dimensional. To prove this, consider the subspace U of V spanned by
the elements of the form π(Yα1

) . . . π(Yαl
)v, where Yαi

∈ g−αi
and αi’s are positive

roots. Using commutation relations, it is easy to prove that U is invariant. Then,
by definition, V = U . It follows that V is spanned by the weight vectors of the
above form, which have weights lower than µ0, µ0 is the highest weight for V . Also,
the only weight vectors with weight µ0 are multiples of v because all other weight
vectors have weights lower than µ0. Thus the weight space of µ0 is one-dimensional.

Proposition 4.2. Every irreducible representation of g is a highest weight cyclic
representation, with a unique highest weight µ0.

Proof. Every irreducible representation is a direct sum of its weight spaces. Finite
dimensional representations have only finitely many weights. Thus we can find µ0

such that no weight µ 6= µ0 is higher than it. There exists a corresponding weight
vector v. Then, it follows that π(Xα)v = 0 for all positive roots α. Since the
representation is irreducible, the only invariant subspace containing v is V . Thus,
the representation is a highest weight cyclic representation. �

Conversely, every highest weight cyclic representation of g is irreducible, because
the smallest invariant subspace of V containing v is V itself.

Proposition 4.3. Two irreducible representations of g with the same highest weight
are equivalent.

Proof. Suppose (π, V ) and (σ,W ) are two representations of g with the same highest
weight µ0. Let v ∈ V and w ∈ W be weight vectors of µ0 in each representation.
Consider the representation V ⊕W . It is easy to show that µ0 is also the highest
weight in V ⊕W . Let U be the smallest invariant subspace of V ⊕W that contains
(v, w). U is a highest weight cyclic representation, and therefore irreducible. Define
two projection maps P1 : V ⊕W → V, (v, w) 7→ v and P2 : V ⊕W → W, (v, w) 7→
w. Since P1|U and P2|U are intertwining maps and U, V,W are irreducible, the
intertwining maps are invertible by Schur’s lemma. Thus U, V,W are all isomorphic
to each other. �

Proposition 4.4. If π is an irreducible representation of g, then the highest weight
µ0 of π is a dominant integral element.

Proof. Given the highest weight µ0, its weight vector v0, and a positive root α,
either µ0 − α is a root or π(Yα)v0 = 0. Inductively, there exists an integer m ≥ 0
such that µ0 − nα is a root for all n ≤ m and π(Yα)vm = 0 where vk is a weight
vector of µ0−kα. Using commutation relations and induction, it can be proven that
π(Xα)vk = [kµ0(Hα) − k(k − 1)]vk−1 holds for all k > 0. Thus, when k = m + 1,
since vm+1 = 0, (m+ 1)(µ0(Hα)−m) = 0. It follows that µ0(Hα) is a nonnegative
integer. �

The only thing left to be shown now is that every dominant integral element
is the highest weight of an irreducible representation. This is a nontrivial task.
Before I finish the paper, I will briefly present Verma modules to construct such
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representation. A Verma module is an infinite-dimensional representation on a
vector space Vµ that has a highest weight µ. It can be defined for every element
µ of h∗, not necessarily an integral element, but it is not finite-dimensional. Thus,
it doesn’t match our requirements by itself. However, if µ is a dominant integral
weight, then Vµ contains a maximal invariant subspace Uµ such that Vµ/Uµ is finite
dimensional, irreducible, and has highest weight µ.

We can construct Vµ by looking at its properties. Since µ is a highest weight,
the representation π of g on Vµ should satisfy π(Xα) = 0 for all positive roots α.
Also, since µ is a weight, π(H − µ(H)1) = 0 for all H ∈ h. It turns out that we
can always find such a representation, using the concept of universal enveloping
algebra. The universal enveloping algebra of g always have an ideal generated from
Xα’s and (H − µ(H)1’s, so we can take the quotient of the universal enveloping
algebra by the ideal, which is isomorphic to Vµ.

Now we have the theorem of highest weight, and we can classify all finite-
dimensional representations of g according to it.
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