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Abstract. The word problem for finitely generated groups states that there

exists no algorithmic way to determine whether a loop in the fundamental
group of a finite space is nullhomotopic. However, we show that deciding

whether such a loop is nullhomotopic is an equivalent problem to determining

whether two particular finite spaces are weak equivalent. Thus, the undecid-
ability of the word problem identifies two spaces that cannot be classified up to

weak equivalence, disproving the existence of an algorithm. This then implies

the impossibility of enumeration of weak equivalences of finite spaces and of
simplicial complexes up to homotopy.
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1. Introduction: Homotopy Theory on Finite Spaces

In classic homotopy theory, the category of simplicial sets admits a model struc-
ture that is Quillen equivalent to the familiar model structure on the category T op
of topological spaces. That is to say, simplicial sets are useful and widely used
combinatoric models of the homotopy theory of topological spaces. Perhaps lesser
known however, is that the homotopy theory of T op can be also modelled by the
category Pos of partially-ordered sets (posets) [12]. This can be further extended
to finite spaces by imposing upon the poset the structure of a topological space.

Of central interest to this paper is the notion of weak homotopy equivalence.
Recall that a weak (homotopy) equivalence is a continuous mapping that induces
an isomorphism on all homotopy groups.

Definition 1.1. Two spaces X and Y are weakly (homotopy) equivalent if there
is a finite chain of weak homotopy equivalences fi : Zi → Zi+1 where

X = Z0
f0−→ Z1

f1−→ . . .
fn−2−−−→ Zn−1

fn−1−−−→ Zn = Y
1
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As will be shown in the following background sections, the class of weak equiv-
alences between finite spaces corresponds exactly to the class of weak equivalences
between abstract simplicial complexes. When an abstract simplicial complex is
realized however, the resulting polyhedra is a type of CW complex, and therefore
this correspondence holds only in the strong case. That is to say that although it
is always the case that a homotopy equivalence is a weak equivalence, there exists
no distinction when considering maps between CW complexes.

Definition 1.2. We say that two spaces X and Y are homotopy equivalent if there
are maps f : X → Y and g : Y → X such that g ◦ f ∼ idX and f ◦ g ' idY .

Since a weak equivalence between finite spaces induces a homotopy equivalence
between their underlying polyhedra, the classification theorem for homotopy equiva-
lences between finite spaces [13] does not extend, and further, the following sections
prove that no such method for this purpose exists. In particular, the undecidability
of the word problem for finitely generated groups implies that there is no algorithm
to calculate whether two specific finite spaces are weak equivalent.

2. Background: Relationships Between F-Spaces and Other
Categories

We begin by noticing that a finite space is an instance of an Alexandroff Space,
wherein arbitary intersections of open sets are open. The Alexandroff topology em-
beds Pos in T op as the full subcategory of Alexandroff T0-spaces, which restricts
to an isomorphism between finite posets and finite topological spaces.

Definition 2.1. The Alexandroff topology on a poset P gives the underlying set
the topology Ux = {y|x ≤ y}. The specialization order on a topological space X
gives the underlying set the ordering x ≤ y if Ux ⊂ Uy.

Henceforth, we define F − spaces to be the category of finite T0 Alexandroff
spaces with objects called F-spaces.

One can also naturally define an Alexandroff topology on the poset of faces of
an abstract simplicial complex, producing an ordered abstract simplicial complex,
or order complex, which will be finite unless otherwise stated.

Definition 2.2. The order complex functor K : Pos → OS C associates to a
finite space X the order complex K (X) whose simplices are the totally ordered
subsets of X. [16]

The face poset of a simplicial complex is defined by the following construction.

Definition 2.3. The face poset functor X : S C → Pos first forgets to A S C
then takes the Posets of face simplices as objects and inclusions as orders.

Composing the previous two functors in either order does not return the original
poset or simplicial complex, but rather defines the barycentric subdivision. This
operation is further explored in section five.

Definition 2.4. Define a functor i : OS C ↪−→ S set sending K 7→ Ks simply by
allowing repetition. Let Kn be the set of n-simplices of an order complex. Then
we define

Ks
n = {v0 ≤ · · · ≤ vn|{v0, . . . , vn}(may have repetition) is a simplex in K}
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Face maps: di : Ks
n → Ks

n−1, 0 ≤ i ≤ n is by deleting vi
Degeneracy maps: si : Ks

n → Ks
n+1, 0 ≤ i ≤ n is by repeating vi. [16]

Definition 2.5. The total singular complex functor is defined as Sn(X) = Map(∆n, X)
for a topological space X and geometric simplex ∆n = {(t0, . . . , tn)|ti ≥ 0,Σti = 1}.
The geometric realization functor |.| : S set→ T op defines

|K (X)| :=
∐
i≥0

K (X)i ×∆i/(k, σit) ∼ (sik, t), (k,∆is) ∼ (dik, s),

for k ∈ K (X)n, t ∈ ∆n+1, and s ∈ ∆n−1. [16] We refer to |K (X)| as a
polyhedron.

3. The Word Problem for Finitely Presented Groups

We embark upon a brief interlude outlining the word problem for finitely pre-
sented groups.

Definition 3.1. A presentation for a group G consists of a set of generators so that
every group element can be written as a product of powers of some of these gener-
ators and a set of relations among those generators. A group is finitely presented
if both the set of generators and the set of relations are finite.

The word problem is an algorithmic problem that decides whether two words
W,V in the generators of a group are equivalent. By setting W := WV −1, this is
equivalent to asking whether a specific word W is equivalent to the identity.
Because Tietze transformations give an effective way of changing between two pre-
sentations, having a solvable word problem is a group-theoretic property, and thus
is independent of any specific presentation. Thus, the discovery of a finitely pre-
sented group with an unsolvable word problem by Novikov and Boone [3] answers
the word problem in the negative, proving that given an arbitrary finite presen-
tation, there is very little we can know about the group or even about any given
element. The following theorem, which we will henceforth refer to as the word
problem (for finitely generated groups), formalizes this.

Theorem 3.2. There is no algorithm that, given a finitely presented group G,
decides whether or not a given word is equivalent to the identity in G. [3]

The following lemma motivates a useful corollary of the word problem.

Lemma 3.3. Given a finitely presentable group G, there exists a finite space X so
that π1(X) ' G.

Proof. For any finitely presented group G, there exists a finite CW complex Y so
that π1(Y ) ' G [7, pf. of Cor. 1.28, p.52]. Further, since every CW complex is
homotopy equivalent to a simplicial complex (which can be chosen to be of the
same dimension as X [7, thm. 2C.5, p.182]), X is homotopy equivalent to a finite
simplicial complex K. Then from the previously mentioned result, K is homotopy
equivalent to an associated finite space, X. �

Thus, we can equally determine whether an element (loop) of the fundamental
group of a finite space is equivalent to the identity of the group (the constant map).

Theorem 3.4. There is a finite space X with a presentation G ' π1(X) such that
there is no algorithm that determines whether or not a given loop f ∈ G ' π1(X)
is nullhomotopic.
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4. Computing Whether Two General Spaces are Weak Equivalent

Recall that the fundamental group of a space can be represented as based homo-
topy classes of based maps [S1, X]∗, with the natural basepoint being the homotopy
class of the constant map from S1 to the basepoint x0 ∈ X. We will eventually
prove that if a specific loop f : S1 → X in π1(X) of a finite space X is nullho-
motopic, then two adjunction spaces in T op can be shown to be weak equivalent.
We begin however, by proving the more general version of the result concerning
an arbitrary continuous map f : X → Y between spaces. We will begin with a
discussion of a cofibers, which motivates the eventual construction of these spaces.
A homotopy cofiber in T op is the analogue of the construction of a cokernel
Y/Im(f) of a homomorphism f : X → Y in A b, the category of abelian groups,
where a map being zero is replaced by a map being nullhomotopic. As should be-
come clear, in the homotopy cofiber of a map f : X → Y , the image f(X) ∈ Y is
removed up to homotopy.

In the eventual construction of the cofiber, we introduce several adjunction
spaces, which are examples of pushouts in T op. Geometrically, if A is a sub-
space of X and i : A ↪→ X is an inclusion map, the pushout of two spaces X and
Y is can be constructed by ”gluing” along a A using an attaching map f : A→ Y .
The following commutative diagram should clarify this notion.

Definition 4.1. Let A ⊂ X be a subspace. Then the pushout of a given map
f : A → Y along the inclusion i : A ↪→ X, is defined as the quotient of the
coproduct X

∐
Y under the identifications i(a) ∼ f(a), written

X ∪f Y = (X
∐

Y )/(a ∼ f(a))

A Y

X X ∪f Y

f

i

The wedge sum X ∨ Y is the pushout (Y ← ·→ X) in T op.

Definition 4.2. The suspension of X is the pushout

X C(X)

C(X) S(X)

f

i

Definition 4.3. The cone on X is the pushout

X ∗

X × I C(X)

f

i

where ∗ is a disjoint basepoint that is a one-point space.

The map X 7→ C(X) induces a functor C : T op→ T op, which we can apply to
a morphism between topological spaces.
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Definition 4.4. The homotopy cofiber of a continuous map f : X → Y is the
pushout

X Y

C(X) C(f)

f

i

The homotopy cofiber of a topological map has extremely convenient prop-
erties. Notice that the composition of the unpointed homotopy cofiber sequence

X
f−→ Y

i0−→ C(f) is nullhomotopic by design. Further, since C(X) is contractible,
q : C(f) → C(f)/C(X) ∼= Y/f(X) is a homotopy equivalence, and thus this se-
quence leads to the use of C(f) as a ”homotopy cokernel.”

Note that although in the following theorem the unreduced suspension S(X) is
based, it should not be confused with the reduced suspension Σ(X). We prefer
the unreduced suspension because S(X) = C(X → ∗) and lose no generality by
assuming a basepoint.

Theorem 4.5. If f : X → Y is homotopic to the constant map at a point y0 ∈ Y ,
then C(f) is homotopy equivalent to the wedge sum S(X) ∨ Y where the point of
S(X) is identified with y0.

Proof. Assume that f : X → Y is the constant map where f(x) = y0 for every
x ∈ X. Then C(f) = C(X)∪f Y = (C(X)

∐
Y ) / ∼ with respect to the equivalence

relation (x, 0) ∼ f(x) = y0, just by definition. It’s clear that when identified,
this simplifies to the wedge sum C(f) = S(X) ∨ Y = (C(X)

∐
Y ) / ∼ where

(x, 0) ∼ y0, (x, 1) ∼ y0 for all x ∈ X. �

Then considering a loop in the fundamental group as a specific map f : S1 → X
where X is a topological space or A−space we obtain the following corollary which
the word problem implies in undecidable.

Corollary 4.6. If f : S1 → X is homotopic to the constant loop at a point x0 ∈ X,
then C(f) is homotopy equivalent to the wedge sum S(S1) ∨X where the point of
S(S1) is identified with x0.

5. Computing Whether Two Finite Spaces are Weak Equivalent

The interpretation of the prior theorem requires the derivation of finite analogues
of the topological constructions introduced. We define the coproduct in F −spaces
in the following way.

Definition 5.1. For a set {Xi|i ∈ I} of finite spaces, the topology of the union on
the disjoint union

∐
i∈I Xi has as open sets the unions of open sets Ui ⊂ Xi.

The cone and suspension can be constructed in a finite setting using the following
operation.

Definition 5.2. The ordinal sum X � Y of two finite T0-spaces X and Y is the
disjoint union X

∐
Y keeping the given ordering within X and Y and setting x ≤ y

for every x ∈ X and y ∈ Y .

Definition 5.3. We now define the following adjunction spaces.
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• Define the non-Hausdorff cone as C(X) := X � ∗.
• Define the non- Hausdorff suspension as S(X) := X � S0 [2].
• Give the non-Hausdorff mapping cone C(f) the underlying set C(X)

∐
Y

and for x ∈ C(X) and y ∈ Y , set x ≤ y in C(f) if f(x) ≤ y in Y .

Unfortunately, the construction of C(f) does not apply to the map f ′ : S1 → X
but rather requires a map f : Z → X where both spaces are F-spaces. In order to
”replace” S1 with a finite space, we must therefore show that the map f ′ : S1 → X
factors through an F-space Z up to homotopy.

As shown in reference [9], S(S1) presents a weak equivalent ”finite analogue”
of S1 that presents as a reasonable candidate for Z. This is the four-point circle,
ordered a, b ≤ c, d. As representing complicated loops with only four points presents
a rarely feasible challenge, we introduce the barycentric subdivision of F-space
as a method of introducing more points to the space without changing its weak
homotopy type.

Definition 5.4. The subdivision Sd(X) of an F -spaceX is the composition X (K (X)).
The nth iteration of this process is denoted Sdn(X) or Sdn(K).

Intuition suggests that replacing the map Sdn(S(S1))→ X should be homotopy
equivalent to S1 → X for a sufficiently large number of subdivisions. This is
formalized by the simplicial approximation theorem (Hardie-Vermeulen).

Theorem 5.5. If f : |K (X)| → |K (Y )| is any continuous map where X is an
F-space, and Y is an arbitrary A-space, then there exists an n ≥ 0 and a map
g : SdnX → Y so that |K (g)| ∼ f .

Thus, we have a way of representing continuous maps up to homotopy as maps
between F-spaces. In the establishing homotopy classes of maps between F-spaces,
we define the conditions under which two F-space maps f, g : X → Y have ho-
motopic geometric realizations. Notice that this comparison is between associ-
ated order complexes, and therefore subdivision is considered to be the composite
K (X (i(K))) for some simplicial complex K. Further note that since that the
terminal object in a poset (if it exists) is the supremum, we can define the sup map
for an F-space X, so if σ = {x0, x1, . . . , xk} ∈ Sd(X), then sup(σ) = xk.

Definition 5.6. Two simplicial maps g : K (X)→ K (Y ) and f : Sdn(K (X))→
K (Y ) are contiguous if for each simplex σ ∈ Sdn(K (X)), there is a simplex
τ ∈ K (Y ) such that f(sup(n)(σ)) ⊂ τ and g(σ) ⊂ τ .

The following lemma clarifies that homotopic maps between F-spaces are homo-
topic when realized.

Lemma 5.7. Suppose f and g are maps from X to Y , where X and Y are F-spaces.
If f ' g, then |K (f)| ' |K (g)|.

Proof. Since f ' g, we can show f(x) = g(x) for all but one x′, where f(x′) ≤ g(x′).
For a simplex σ ∈ X, x′ /∈ σ implies f(σ) = g(σ), which is clearly contained in
some simplex of Y . If x ∈ σ, then x = xi for some i and after removing repetitions,
f(σ) and g(σ) are contained in {f(x0), f(x1), . . . , f(x′), g(x′), g(xi+1), . . . , g(xk)}.
Because they are simplicially close [?], K (f) : K (X) → K (Y ) and K (g) :
K (SdnX)→ K (Y ) are contiguous. �
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The previous facts in tandem with the prior lemma lend to the follow colimit
construction.

Theorem 5.8. If X and Y are F -spaces, there is a natural bijection between
[|K (X)|, |K (Y )|] and the colimit of the system

[X,Y ]
sup∗

−−−→ [SdX, Y ]
sup∗

−−−→ [Sd2X,Y ]
sup∗

−−−→ . . .

This bijection, which we denote K : colimn[SdnX,Y ] → [|K (X)|, |K (Y )|], maps
[f ] ∈ [SdiX,Y ] to [|K (f)|] ∈ [|K (X)|, |K (Y )|].

Proof. Lemma 5.7 tells us K is well-defined. If [f ] ∈ [SdiX,Y ] and [g] ∈ [SdjX,Y ]
are identified in the colimit, then there exists an N so that f ◦ sup(N−i) ' g ◦
sup(N−j). From lemma 5.7, |K (f ◦ sup(N−i))| ' |K (g ◦ sup(N−j))|, and since
f ◦ sup(Ni) is contiguous to f , |K (f)| ' |K (g ◦ sup(N−i))|. Thus, |K (f) ' K (g).
Each homotopy class of maps has at least one associated A-space approximation
so K is surjective. It is also injective because if |K (f)| ' |K (g)|, then f and
g are A-space approximations. Then for [f ] ∈ [SdiX,Y ] and [g] ∈ [SdjX,Y ], if
g : SdiX → Y and g′ : SdjX → Y are both A-space approximations of f , g and g′

are contiguous. Thus, f and g are contiguous and [f ] = [g] in colim[SdnX,Y ]. �

Since the map K is surjective, only a finite number of subdivisions on the level
of F-spaces are necessary to model any continuous map up to homotopy. Therefore
we have the desired result.

Theorem 5.9. Any map S1 g−→ X factors as

S1 X

Sdn(SS1)

g

i g̃

up to homotopy.

Thus, there exists no loss of generality when considering a map from g̃ : Sdn(SS1)→
X, and this implies that C(g̃) is weak equivalent to X ∨ S(Sdn(SS1)) for some n.
We turn our attention toward showing that C(g̃) is weak equivalent to C(g̃). The
following theorem is a useful tool towards this goal, and states that if two spaces
are locally weak equivalent, they are so globally as well.

Lemma 5.10. Let p : E → B be a map and O an open cover of B where:

(1) If x ∈ U ∩ V ∈ O, then there exists some W ∈ O with x ∈W ⊂ U ∩ V .
(2) For each U ∈ O, the restriction p : p−1(U)→ U is a weak equivalence.

Then p is a weak homotopy equivalence. [9]

The following relation holds between a classical cone and its finite analogue.

Corollary 5.11. If f : X → Y is a map between finite spaces, then the map
γ : C(f)→ C(f) is weak equivalence.

Proof. Take the subspaces X, Y and X∪{∗} as the open cover of C(f). Notice that
these subsets satisfy the conditions of Lemma 5.10. Let γ be the map sending the
cone point to {∗}, X × (0, 1) to X and Y to itself. If we restrict γ to each of these
subspaces, γ becomes a homotopy equivalence and, therefore, a weak homotopy
equivalence. Thus, γ is a weak homotopy equivalence. �
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In pursuit of extending Corollary 4.6 to F-spaces, we derive one last weak equiv-
alence.

Corollary 5.12. Let X and Z be finite spaces where Z is weak equivalent to S1.
Then if the basepoint x of X is chosen so that {x} is an open set and the basepoint
z of Z is chosen so that for a weak equivalence f : S1 → Z, the image z = f(x) is
an open point and the preimage is contractible, the wedge sum X ∨ Z using these
two basepoints is weak equivalent to X ∨ S1.

Proof. From the given assumptions, we obtain a map h : X∨S1 → X∨Z restricting
to the identity on X and to the weak equivalence f on S1. We can cover X∨Z with
the open cover {X,Z, {∗}}, where ∗ is the basepoint where x and z are identified.
Since h−1(X) → X is the identity, h−1(Z) → Z is f , and h−1(∗) → ∗ from the
assumption that f−1(∗) is contractible, by lemma 5.10, h is a weak equivalence. �

It’s worth noting that while usually it’s more useful for basepoints to be closed
(along with a slightly stronger condition) in order to get a ”well-pointed space”, in
this case open points work better.

6. Proof

Theorem 6.1. There is no algorithm that decides whether two finite spaces are
weak equivalent.

Proof. Let G be a finitely presented group with generators g1, . . . gn and W and
V are words in the gi. We can assume V = idG, so we’re interested in whether
W = V −1 = idG.

We know there exists a finite space X so that π1(X) = G. Then, the word
problem we’re trying to solve is equivalent to asking if a specific map f : S1 → X
is nullhomotopic, and therefore whether X ∨S(S1) is weak equivalent to C(f). We
can replace this map with a map g̃ : Sdn(SS1) → X. Note that Sn(X) is weak
equivalent to Sn(X) for any finite space X[9, p.25]. Then since X ∨S(SS1) is weak
equivalent X∨Sdn(SS1) and C(f) is weak equivalent to C(g̃), if g̃ is nullhomotopic,
then C(g̃) is weak equivalent to X ∨ S(SdnSS1).

And that solves the word problem. Since it’s known that the word problem can’t
be solved by algorithms, this is a contradiction and our hope of telling if two finite
spaces were weak equivalent seems impossible. �
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