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Abstract. In this paper we develop the basic theory of representations of

finite groups, especially the theory of characters. With the help of the concept
of algebraic integers, we provide a proof of Burnside’s theorem, a remarkable

application of representation theory to group theory.
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1. Introduction

Definition. A representation of a group G is a pair (V, ρ) where V is a complex
vector space and ρ : G→ GL(V ) is a group homomorphism.

When no confusion arises, we often refer to V or ρ as the representation itself.
We will often denote ρ(g) as ρg and ρ(g)(v) as gv for g ∈ G and v ∈ V . If V has
finite dimension n, we call n the degree of the representation.

In this paper all representations are assumed to be finite dimensional.

Definition. Let (V, ρ) and (W,ρ′) be representations of G. A homomorphism
resp. isomorphism ϕ from the first to the latter is a linear transformation resp.
isomorphism from V to W so that the diagram

V W

V W

ρg
ϕ

ρ′g

ϕ

commutes for every g ∈ G.

Definition. If (V, ρ) is a representation of G and V ′ is a subspace of V , and
ρg(V

′) ⊆ V ′ for all g ∈ G, we see that (V ′, ρ′), where ρ′ = ρ |V ′ , is also a represen-
tation of G. In this case we call V ′ a subrepresentation of V .
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Definition. If a representation (V, ρ) contains a proper nonzero subrepresentation,
we say that it is reducible. Otherwise, we say that it is irreducible.

Theorem 1. If (V, ρ) is a representation of a finite group G and V ′ is a subrepre-
sentation of V , then there is a complement W of V ′ that is also a subrepresentation
of V .

Proof. Let n be the degree of (V, ρ). Since V is a finite dimensional complex vector
space, we can endow it with a hermitian inner product (x | y) =

∑n
i=1 xiyi, where

x = (x1, . . . , xn) and y = (y1, . . . , yn) under a certain basis. Now, we can replace
this inner product with a new inner product 1

|G|
∑
g∈G〈ρg(x), ρg(y)〉, which is clearly

also hermitian. We show that the orthogonal complement W of V ′ under this inner
product is stable under the action of G. That is, for v′ ∈ V ′, w ∈ W , and h ∈ G,
we have
1

|G|
∑
g∈G
〈ρg(hw), ρg(v

′)〉= 1

|G|
∑
g∈G
〈ρghw, ρghh−1(v′)〉= 1

|G|
∑
g∈G
〈ρgw, ρg(h−1v′)〉= 0,

since the right action of h permutes G and h−1v′ ∈ V ′ = W⊥. QED

Corollary. Every representation of a finite group is isomorphic to a direct sum of
irreducible representations.

Proof. There is nothing to prove in the case that the representation has degree 1,
since the only nonzero subspace of C is C itself. Let (V, ρ) be a representation of
degree n. If V is irreducible we are finished. If not, let V ′ 6= V be a nontrivial
subrepresentation stable under the action of G. The above theorem shows that
W = (V ′)⊥ is also a subrepresentation of V . And V is isomorphic to V ′ ⊕ W
as a representation of G. Since V ′ and W have dimension less than V , they are
isomorphic to direct sums of irreducible subspaces via the induction hypothesis.

QED

2. Characters

Definition. We define the character of a representation (V, ρ) to be the map χ(V,ρ) :
G→ C, where χ(V,ρ)(g) = Tr(ρg) for any g ∈ G.

When no confusion arises, we may write χ(V,ρ) as χ.

Proposition 1. If χ is a character of a representation of a finite group G of degree
n, then for any g, h ∈ G,

(i) χ(1) = n

(ii) χ(g−1) = χ(g)
(iii) χ(gh) = χ(hg).

Proof. (i) is true since the trace of the identity n×nmatrix is n. Suppose λ1, . . . , λm
are eigenvalues of ρg with multiplicities d1, . . . , dm. Then 1/λ1, . . . , 1/λm are eigen-
values of ρg−1 with the same multiplicity. Note that ρg has finite order, so its

eigenvalues are roots of unity. Thus 1/λi = λi for 1 ≤ i ≤ m, and (ii) follows. The
final property of characters follows from the corresponding equation for the trace
of matrices: Tr(ρgρh) = Tr(ρhρg). QED

Definition. If (V1, ρ
1) and (V2, ρ

2) are representations of G, then we may define
V1 ⊕ V2 as a representation ρ by setting ρg = ρ1g ⊕ ρ2g for any g ∈ G.
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Proposition 2. If (V1, ρ
1) and (V2, ρ

2) are representations of G and χ1 and χ2

are their characters respectively, then the character χ of V1⊕V2 has value χ1 +χ2.

Proof. Let g ∈ G, and ρ1g and ρ2g have corresponding matrices R1
g and R2

g. Then the

matrix Rg =

(
R1
g 0

0 R2
g

)
representing ρ1g⊕ρ2g clearly has trace Tr(R1

g)+Tr(R2
g) =

χ1(g) + χ2(g). QED

Schur’s Lemma. Let f : V1 → V2 be a homomorphism between two irreducible
representations (V1, ρ1) and (V2, ρ2) of G. Then

1. If the representations are not isomorphic, f = 0
and

2. if (V1, ρ1) = (V2, ρ2), f is a homothety.

Proof. We may assume f 6= 0, for if not the lemma would certainly hold. Then
ker f 6= V1 and Im f 6= {0}. In addition, if w1 ∈ ker f and w2 ∈ Im f , we see
f ◦ ρ1g(w) = ρ2g ◦ f(w) = ρ2g(0) = 0 and gf(w) = ρ2g ◦ f(w) = f ◦ ρ2g(w) ∈ Im(f),
so that the kernel and image of f are invariant under the action of G. Because V1
and V2 are irreducible, we can deduce from this that ker f = {0} and Im f = V2,
so f is an isomorphism, proving (1). For (2), since C is algebraically closed, f has
some eigenvalue λ. If we let f ′ = f − λ · Id, then f ′ has a nonzero kernel, and
one may easily check that f ′ is a homomorphism of representations. Thus, by the
irreducibility of V1, f ′ = 0, or f = λ · Id is a homothety. QED

For complex valued functions φ, ψ : G → C, where G is finite, we now denote
〈φ, ψ〉 = 1

|G|
∑
g∈G φ(g)ψ(g−1) to be their convolution.

Theorem 2. Let (V, ρ), (V ′, ρ′) be two irreducible representations of a finite group
G and χ, χ′ be their characters respectively. If (V, ρ) and (V ′, ρ′) are isomorphic,
then 〈χ, χ′〉 = 1. Otherwise, 〈χ, χ′〉 = 0.

Proof. Let f be an arbitrary linear map of V to V ′. Then we can define f0 as
1
|G|
∑
g∈G(ρ′g)

−1fρg, which yields

(ρ′h)−1 ◦ f0 ◦ ρh =
1

|G|
∑
g∈G

(ρ′h)−1(ρ′g)
−1fρgρh

=
1

|G|
∑
g∈G

(ρ′gh)−1fρgh =
1

|G|
∑
g∈G

(ρ′g)
−1fρg = f0

for any h ∈ G, since multiplication by h permutes the elements of G. Hence f0 is a
homomorphism of representations. If ρg, ρ

′
g and f are represented in matrix form

as (rij(g)), (r′i′j′(g)), and (fi′i) respectively, we have

f0 =
1

|G|
∑
g,j,j′

r′i′j′(g
−1)fj′jrji(g)

for every i, i′.
Assume that ρ is not isomorphic to ρ′. Then, by Schur’s Lemma, we have

f0 = 0, and since f was chosen arbitrarily, we can consider the systems of values
where fj′j = 1 for any arbitrary choice of j and j′, and is 0 otherwise, then equate
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coefficients to show that 〈r′i′j′ , rji〉 = 0 for any i, i′, j, j′. Thus, by the second
property of Proposition 1,

〈χ, χ′〉 =
1

|G|
∑
g∈G

χ(g)χ′(g−1) =
1

|G|
∑
g,j,j′

r′j′j′(g)rjj(g
−1) =

∑
j,j′

〈r′j′j′ , rjj〉 = 0.

Assume, instead, that ρ and ρ′ are isomorphic. Then Schur’s Lemma now gives
f0 = λ · Id for some scalar λ, so

n · λ = Tr(f0) =
1

|G|
∑
g∈G

Tr(ρg−1fρg) =
1

|G|
∑
g∈G

Tr(f) = Tr(f),

where n is the degree of the representation, and we get λ = 1
n Tr(f). Since f0 = λ·Id,

we now have
1

|G|
∑
g,j,j′

r′i′j′(t
−1)fj′jrji(t) = λδi′i =

1

n
δi′i
∑
j,j′

δj′jfj′j ,

which implies 〈r′i′j′ , rji〉 = 1
nδi′iδj′j . Therefore,

〈χ, χ′〉 =
1

|G|
∑
g∈G

χ(g)χ(g−1) =
1

|G|
∑
g,j,j′

r′j′j′(g)rjj(g
−1)

=
∑
j,j′

〈r′j′j′ , rjj〉 =
1

n

∑
j,j′

δj′j · δj′j = 1.

QED

Theorem 3. Let V be a representation of a finite group G with character φ and
W1⊕ . . .⊕Wk a decomposition of V into irreducibles. Then, if W is any irreducible
representation of G with character χ, the number of Wi isomorphic to W is 〈φ, χ〉.

Proof. By Proposition 2, we have φ = χ1 + · · · + χk, where χi is the character of
Wi, which implies 〈φ, χ〉 = 〈χ1, χ〉+ · · ·+ 〈χk, χ〉. By Theorem 2 the ith summand
here is either 1 or 0 depending on whether or not Wi and W are isomorphic, and
the result follows. QED

Corollary. The number of Wi isomorphic to W in Theorem 3 does not depend on
the choice of decomposition, and two representations with the same character are
isomorphic.

If a representation V decomposes into a direct sum of irreducible representations,
and the irreducible representation V ′ occurs in this direct sum n times, from here
forward we say V ′ occurs in V with multiplicity n.

Theorem 4. If χ is the character of a representation V of a finite group G, then
〈χ, χ〉 = 1 if and only if V is irreducible.

Proof. The “if” part of the statement is given in Theorem 2. By Theorem 3 and
its notation, we have V ∼= m1W1⊕ . . .⊕mkWk, where mi is the integer 〈χi, χ〉. So

〈χ, χ〉 = m1〈χ1, χ〉+ · · ·+mk〈χk, χ〉 =
∑k
i=1m

2
i , and the theorem is clear. QED

Definition. The regular representation of a finite group G is the pair (V, ρ) where
V = C|G| has a basis {eg}g∈G and ρ is defined so that ρh(eg) = ehg for any h ∈ G.

Proposition 3. The character χG of the regular representation of a finite group
G has |G| as its value at 1 and 0 elsewhere.
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Proof. The first half of the statement follows from Proposition 1. To consider
other values, note that action by elements of G permute elements of the basis, and
nonidentity elements send no basis element to itself. Therefore, χG(h) = Tr(ρh) = 0
when 1 6= h ∈ G. QED

Corollary. If V ′ is an irreducible representation of a finite group G, V ′ occurs in
the regular representation of G with multiplicity equal to its degree n.

Proof. Let χ′ be the character of V ′. By Propositions 1 and 3, we have

〈χ, χ′〉 =
1

|G|
∑
g∈G

χ(g)χ′(g−1) =
|G|
|G|
· χ′(1) = n,

and the proof follows from Theorem 3. QED

Definition. A class function on a group G is a function which is constant on
conjugate classes; that is, f(g) = f(hgh−1) for all g, h ∈ G.

Definition. For a finite group G, by Ĝ we denote the set of isomorphism classes
of the irreducible representations of G.

Theorem 5. The characters of all the elements of Ĝ form an orthonormal basis
for the space H of class functions on G with respect to the Hermitian inner product
(· | ·).

Proof. Proposition 1 shows that these characters are an orthonormal system.
Assume f is a class function orthogonal to each of the characters of the irreducible

representations. We prove f = 0. Let ρf =
∑
g∈G f(g)ρg−1 for any irreducible

representation ρ of G with degree n and character χ. Then, for any h ∈ G,

ρ−1h ρfρh =
∑
g∈G

f(g)ρ−1h ρg−1ρh =
∑
g∈G

f(h−1gh)ρh−1g−1h = ρf ,

since f is a class function and conjugation by h permute the members of G, pre-
serving inverses. Therefore ρf satisfies the hypotheses of Schur’s Lemma, and is
hence a homothety λ ∈ C. We calculate

nλ = Tr(λ · Id) = Tr(ρf ) =
∑
g∈G

f(g)Tr(ρg−1) =
∑
g∈G

f(g)χ(g−1) = 〈f, χ〉 = 0,

so ρf = λ = 0. Since any representation can be decomposed into a direct sum of
irreducible ones by the corollary to Theorem 1, combined with Proposition 2 this
shows that ρf = 0 even for representations ρ that are not irreducible. If we take ρ
to be the regular representation, then

0 = ρfe1 =
∑
g∈G

f(g)ρg−1e1 =
∑
g∈G

f(g)eg−1 ,

and by the linear independence of {eg}g∈G, we have f = 0 on G. QED

Corollary. The number of elements of Ĝ is equal to the number of conjugacy
classes of G.

Proof. The dimension of the space H is clearly equal to the number of distinct
conjugacy classes of G. By the above theorem, this is equal to the number of
isomorphism classes of irreducible representations of G, which are completely de-
termined by their characters. QED
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3. Some More Detailed Results

Proposition 4. Let G be a finite group. Let h ∈ G, O(h) be the number of elements
in the conjugacy class of h, j be an element of G not conjugate to h, and χ1, . . . , χk
the characters of the elements of Ĝ. Then

k∑
i=1

χi(h)χi(h) =
|G|
O(h)

and

k∑
i=1

χi(j)χi(h) = 0.

Proof. Let fh be the class function whose value is one on the class of h and 0
elsewhere. Then, by Theorem 5,

fh(g) =
k∑
i=1

〈fh, χi〉χi(g) =
k∑
i=1

O(h)

|G|
χi(h)χi(g) =

O(h)

|G|

k∑
i=1

χi(g)χi(h)

for g ∈ G. Since χ is a class function, the case where g is in the class of h gives the
first statement, and the case where it is not gives the second. QED

Applying h = 1 to the proposition, we get the following corollary:

Corollary. Let χ1, . . . , χk be the characters of all elements of Ĝ and ni be the degree
of the representation associated with χi. Then

∑
n2i = |G| and

∑
niχi(g) = 0 for

any nonidentity element g of G.

We now consider any representation of a finite groupG a C[G]-module by defining
the action of f ∈ C[G] on h ∈ G by fh =

∑
G cggh when f =

∑
G cgg with cg ∈ C.

In the case of the regular representation, one immediately finds that this is simply
C[G] regarded as a module over itself.

It is clear that any representation of G is irreducible only if it, regarded as a C[G]-
module, is simple. Therefore, C[G] is semisimple - this is essentially a restatement
of Theorem 1 - and any representation of G, by decomposition into irreducibles, is
a direct sum of simple submodules by the corollary to Theorem 1.

Definition. Let G be a finite group, and (W1, ρ1), . . . , (Wk, ρk) representatives of

all elements of Ĝ. We define an algebra homomorphism ρ̃i : C[G] → End(Wi) by

linearly extending ρi. We then define a homomorphism ρ̃ : C[G]→
∏k
i=1 End(Wi)

by ρ̃(f) = (ρ̃1(f), . . . , ρ̃k(f)).

Fourier Inversion Formula. For f ∈ C[G], we put fi = ρ̃i(f). Then, in the
same notation as above,

f =
1

|G|
∑
g∈G

k∑
i=1

niTrWi(ρi(g
−1)fi)g,

where ni is the degree of Wi.
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Proof. Let χi be the character of Wi, and write f as
∑
G cgg. Then the corollary

to Proposition 4 gives

1

|G|
∑
g∈G

k∑
i=1

niTrWi(ρi(g
−1)fi)g =

1

|G|
∑
g∈G

k∑
i=1

niTrWi

ρi(g−1)
∑
g′∈G

cg′ρi(g
′)

 g

=
1

|G|
∑
g∈G

∑
g′∈G

cg′
k∑
i=1

niTrWi
(ρi(g

−1g′))g =
1

|G|
∑
g∈G

∑
g′∈G

cg′
k∑
i=1

niχi(g
−1g′)g

=
1

|G|
∑
g∈G

∑
g′∈G

cg′δgg′ |G|g =
∑
g∈G

cgg = f

QED

Proposition 5. ρ̃ as above is an algebra isomorphism.

Proof. Let F :
∏

End(Wi) → C[G] denote the Fourier inversion formula. The
previous proof shows that F ◦ ρ̃ = 1 |C[G], implying injectivity. Now, to show
bijectivity, we need only compare dimensions. Using the corollary to Proposition
4,

dim(C[G]) = |G|=
k∑
i=1

n2i = dim

(
k∏
i=1

End(Wi)

)
.

QED

Proposition 6. ρ̃ as above maps the center of C[G] isomorphically onto Ck, where
k is the number of conjugacy classes of G.

Proof. The center of C[G] consists precisely of those elements commuting with
each g ∈ G. Applying ρ̃, by the corollary to Theorem 5, the image of this center
then consists of all members of

∏
End(Wi) commuting with each (ρ1(g), . . . , ρk(g)).

Each entry of such functions is a homomorphism of representations, or, by Schur’s
Lemma, a homothety. Conversely, every k-tuple of homotheties clearly satisfies this
commutativity. Pairing these homotheties with their ratios in C, the isomorphism
is shown. QED

4. Integrality Properties of Characters

Lemma. A complex number c is integral over Z i.e., c is the root of a monic
polynomial over Z, if and only if the subring Z[c] of C is finitely generated as an
abelian group.

Proof. Assume c is integral over Z. Then there is some monic f ∈ Z[X] with
f(c) = 0, or

cn + a1c
n−1 + · · ·+ a1 = 0

for some a1, . . . , an ∈ Z. This shows that any power of c greater than n can be
reduced to a Z-linear combination of cn−1, . . . , 1, making Z[c] a finitely generated
abelian group. Assume conversely that Z[c] is finitely generated, and let a1, . . . , am
be its generators. Then there are fi ∈ Z[X] such that ai = fi(c) for 1 ≤ i ≤ m. Now
let N = max{deg f1, . . . ,deg fm} + 1. Then there are bi ∈ C with cN =

∑
biai =∑

bifi(c). Therefore c is a root of the monic polynomial Xn −
∑
bifi(X), which

has integral coefficients, making c an algebraic integer. QED
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Theorem 6. Every element in the image of any character χ of any representation
ρ of a finite group G is an algebraic integer.

Proof. For h ∈ G, since G is finite, we see that ρh has a finite order m. Therefore,
if λ is an eigenvalue of ρh, we have λm an eigenvalue of ρmh = ρ1. Since 1 is the
only eigenvalue of ρ1, this means λm = 1. Therefore χ(h), which is the sum of
eigenvalues of ρh with their algebraic multiplicities, is a sum of mth roots of unity.
Hence χ(h) is contained in Z[e2πi/m], which is a finitely generated abelian group.
By the above lemma, we see that χ(h) is an algebraic integer. QED

Proposition 7. Let f =
∑
G cgg be in the center of C[G], with G a finite group,

and assume the cg are algebraic integers. If ρ is an irreducible representation of G
with character χ, then 1

n

∑
G cgχ(g) is an algebraic integer.

Proof. We first show that f is integral over Z.
For any h ∈ G, we have

∑
G cgh

−1gh = h−1fh = f =
∑
G cgg. This shows that

the coefficients of every conjugate of each g is cg. We may therefore rewrite f as∑k
i=1 cisi, where si is the sum of the members of the ith conjugacy class of G. Since

ci is an algebraic integer for each i, to prove that f is integral over Z, it suffices
to prove that each si is integral over Z. This follows from the lemma preceding
Theorem 6 and the observation that Zs1 ⊕ . . . ⊕ Zsk is a subring with identity of
the center of C[G].

Now, one easily checks that ρ−1h fρh = f as a result of the coefficients of conjugate
elements of G being equal, showing that f is a homomorphism of representations.
Hence, by Schur’s Lemma, it is a homothety λ · Id, and comparing traces gives

nλ = Tr(λ · Id) = Tr(f) =
∑
g∈G

cgTr(ρg) =
∑
g∈G

cgχ(g),

or λ = 1
n

∑
G cgχ(g−1). Since λ · Id = f is integral over Z, λ is an algebraic integer,

proving the statement. QED

Corollary. If ρ is an irreducible representation of a finite group G of degree n,
then n | |G|.

Proof. Let ρ have character χ. We see that the function f =
∑
G χ(g−1)g is in the

center of C[G], since χ is a class function. We may therefore apply the proposition
above, showing

λ =
1

n

∑
g∈G

χ(g−1)χ(g) =
|G|
n
〈χ, χ〉 =

|G|
n

is an algebraic integer. The statement then follows since the only rational algebraic
integers are members of Z. QED

5. Burnside’s Theorem

Lemma 1. If G is a group of order pa, with p prime, then G is solvable.

Proof. We induct on a. The case of a = 0 is trivial. Assume the statement holds
for all integers up to a − 1. We show it holds when |G|= pa. Assume that G has
trivial center. Since the order of any conjugacy class of G divides the order of G,
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we see that each conjugacy class other than {1} has order pki for some ki ∈ N, with
i indexing the conjugacy classes. Hence, by the class equation,

|G|= |Z(G)|+
∑
i

pki = 1 +
∑
i

pki ,

where Z(G) is the center of G. This is a contradiction since p | |G|. Therefore
Z(G) must be a nontrivial normal subgroup, and because Z(G) and G/Z(G) are
both solvable by the induction hypothesis, G is solvable. QED

Lemma 2. Let h be a nonidentity element of a finite group G. Let O(h) be the
number of elements in the conjugacy class of h, and suppose O(h) = pa for some
prime number p. Then there is some irreducible representation ρ of G with kernel
N 6= G such that ρ(h) is in the center of Im(ρ).

Proof. We first find a character χ of a nontrivial irreducible representation of G
such that χ(h) 6= 0 and p - χ(1). Suppose such character does not exist. With the
same notation as Proposition 4, we have

1 +
∑
χi 6=1

χi(1)χi(h) =

k∑
i=1

χi(1)χi(h−1) = 0.

By our assumption p divides each χi(1), so, subtracting 1 and dividing each side by
p, we find that − 1

p is a Z-linear combination of the χi(h). Theorem 6 would then

imply that − 1
p is an algebraic integer, a contradiction.

Let ρ be the representation associated with the character χ found above, and let
N = ker ρ. We know that N 6= G since ρ is not trivial.

Define v : G→ C so that v(g) = 1 if g is in the conjugacy class of h and v(g) = 0
otherwise. Then v is a class function, so, by Proposition 7,

1

χ(1)

∑
g∈G

v(g−1)χ(g−1) =
O(h)

χ(1)
χ(h)

is an algebraic integer, and therefore has norm O(h)
χ(1) |χ(h)| that is an integer. Since

p - χ(1), this shows χ(1) | |χ(h)|. Note that χ(h) 6= 0 and χ(h) is a sum of χ(1)
roots of unity. By the triangle inequality, we deduce that ρh has only one eigenvalue.
Note that ρh is diagonalizable since it has finite order. Therefore, ρh is a scalar
matrix, and is in the center of Im(ρ). QED

Burnside’s Theorem. Every group of order paqb, with p and q prime, is solvable.

Proof. We induct on the pair (a, b). The base cases where a = 0 or b = 0 follow
from Lemma 1.

If G has nontrivial center Z, then G/Z and Z are solvable by the induction
hypothesis, so G is solvable.

Assume instead that G has trivial center. Then there is some nonidentity h ∈ G
such that q - O(h). This is because, if no such h exists, since the sum of the orders
of the conjugacy classes of G is |G|, we would have paqb equal to a multiple of q
plus 1, a clear contradiction. So we may apply Lemma 2 to find a representation
ρ of G with kernel N 6= G and ρ(h) in the center of Im(ρ). If N were trivial, then
G ∼= Im(ρ), putting h at the center of G, a contradiction. Hence both N and G/N
have order less than |G| and are solvable by the induction hypothesis, implying G
is solvable. QED
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