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Abstract. This paper gives a brief overview of the evasiveness of graph prop-

erties and its relationship to topology. We begin by introducing the concept of

evasiveness and give several examples of evasive and non-evasive graph proper-
ties. Next, we introduce several key topological concepts that will be important

in proving the evasiveness of certain graph properties. We subsequently de-

fine simplicial complexes and describe how to view these objects as topological
spaces. Finally, we give a proof of the fact that all non-trivial bipartite graph

properties are evasive.
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1. Evasiveness of Graph Properties

We are given a finite graph G and a particular graph property P, such as whether
the graph is empty or whether it contains a triangle. We know the vertices of G,
but we only know some, possibly zero, of the edges that are or are not present in
G. We are allowed to ask, one at a time, whether or not an edge is present in G.
The goal of this game is to minimize the number of edges we must query in order
to determine whether or not G satisfies P.

Some graph properties require us, in the worst cases, to query all possible edges.
These graph properties are known as evasive properties. For example, if G has
n vertices and we start with no information on the edges of G, an evasive graph
property requires us to query n(n− 1)/2 edges. If G is bipartite with A and B the
sets of vertices in each of its partitions, an evasive property requires us to query all
possible |A| · |B| edges. This paper will examine when graph properties are evasive.

Example 1.1. (Emptiness) Whether or not a given graph is empty is an evasive
graph property. In the worst case, one can query every edge except one, finding
that each queried edge is not present. In this case, the emptiness of the graph is
determined by the final unqueried edge.

Example 1.2. (Triangle-Containing) Whether or not a given graph contains a
triangle is also an evasive property. It is possible to show that we can always arrive
at the case where we have one edge left to query, and we know that there are two
adjacent edges adjacent to the unknown edge. In this case, whether or not the
graph contains a triangle is dependent on the presence of the last unqueried edge.

Example 1.3. (At Least One Edge per Vertex in A) Given a bipartite graph G
with partitions A and B, whether or not each vertex in A is connected to at least
one edge is an evasive property. We note that no matter what order we query the
edges, it is always possible that after |A| · |B| − 1 queries, we arrive at a graph
where |A| − 1 vertices in A are connected to exactly one edge, but the last vertex
in A is not. For example, this occurs when the answers to all of our queries is ”not
present” unless we are asking for the last possible edge of a vertex in A.

In the year 1973, it was conjectured that all non-trivial graph properties on
graphs of n vertices require at least O(n2) queries. However, this conjecture was
soon disproven by counterexamples such as the following scorpion graph property,
which only requires O(n) queries.

Example 1.4. (Scorpion Graph) A scorpion graph is a graph containing a three-
vertex path such that one endpoint of the path is connected to all remaining vertices
while the other two path vertices have no incident edges besides the ones in the path.

First, we note that any graph can contain at most one scorpion, uniquely defined
by its three-vertex tail. Proof: Suppose there are two scorpions in the same graph.
The scorpions must have different tails. However, by definition, one of the endpoints
of the first scorpion’s tail must be connected to at least two of the vertices of the
second scorpion’s tail. This is impossible, as two of the vertices of the second tail
should have no other incident edges besides the ones connecting them.

We will label the three vertices of the tail a, b, and c, where a is only connected
to b, b is only connected to c, and c is connected to all remaining vertices. Given a
graph G with n vertices, select a vertex p in G and query all of its edges.

If p is connected to either none or all other vertices, then G is not a scorpion.



EVASIVENESS OF BIPARTITE GRAPH PROPERTIES 3

If p is connected to all vertices except one, then it must be the c of the tail. In
this case, there is exactly one vertex to which p is not connected, and that vertex
must be the a of the tail. Query all of a’s edges to see that it is connected to
exactly one other vertex b, and query all the edges of b to confirm that G is indeed
a scorpion. This process should take n− 1 + n− 2 + n− 3 = 3n− 6 queries.

Otherwise, if 1 ≤ deg(p) ≤ n − 3, then we know that p is not c. If deg(p) = 1
or 2, we can query all of p’s adjacent vertices to check for the scorpion. Up to
this point, we will have used 3n − 6 queries. If we do not find the scorpion, or if
originally 3 ≤ deg(p) ≤ n− 3, then we know p is not on the tail.

Separate the remaining n − 1 vertices into two sets: A, the set of vertices not
connected to p; and C, the set of vertices connected to p. We note that a must be
in A, and c must be in C. Take a vertex x in A and a vertex z in C and query
their edge. If they are connected, then x cannot be a, so remove x from A. If they
are not connected, then select another vertex x′ in A and query the edge {x′, z}.
If these two are connected, then we similarly remove x′ from A. If they are not
connected, then we remove z from C, since deg(z) < n − 2 thus it cannot be c.
Note that in this process, after every two queries we can remove at least one vertex
from either A or C. Continue this process until only one vertex remains in either
A or C. Since |A|+ |C| = n− 1, the process will end within 2n− 2 queries. At the
end of this process, we will have identified either a or c of the tail.

Query all edges along the potential tail to check for the scorpion. This process
should take at most another n−4+n−5+n−6 = 3n−15 queries. Thus in total, we
can determine whether or not a graph is a scorpion within 3n−6+2n−2+3n−15 =
8n− 23 queries. �

After the discovery of these counterexamples, the conjecture was later weakened
by strengthening the hypothesis to require that the graph property be monotone as
well. A monotone graph property is a property such that if a graph G satisfies the
property, then any graph to which G is a subgraph will also satisfy the property.
We note that the scorpion graph property is not a monotone property, but all of the
prior examples are. This conjecture, known as the Aanderaa-Rosenburg conjecture,
was proven in 1975, when it was shown that all non-trivial, monotone properties
require n2/16 queries. This lower bound was later improved to n2/9, then to n2/4,
and finally to n2/3− o(n2) in 2013.

Amidst these developments, it was conjectured, in what would be known as the
Aanderaa-Karp-Rosenburg conjecture, that all non-trivial, monotone graph prop-
erties are evasive. This conjecture remains unresolved. However, it is known to be
true when |G| is prime, as well as when G is bipartite.
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2. Contractability and Deformation Retracts

In the following section, we will define and explain some basic notions and ex-
amples regarding relevant topological ideas. As we shall later see in this paper, the
evasiveness of a graph property is intimately connected to the contractibility of a
certain topological space associated with that property.

Definition 2.1. Given continuous f, g : X → Y , we say that f and g are homotopic
if there exists a continuous function H : X × [0, 1] → Y such that H(x, 0) = f(x)
and H(x, 1) = g(x).

Definition 2.2. A topological space X is contractible if the identity function on
X is homotopic to a constant function valued at some point x0 in X.

Example 2.3. The unit disk D is contractible. Let H(x, t) = (1 − t)x. Then
H(x, 0) = (1 − 0)x = x and also H(x, 1) = (1 − 1)x = 0. We note that H is
continuous on D, and we are done.

We can view the construction of this homotopy to a constant function as selecting
a fixed center and moving all points in the space toward the center along the path
of least distance. Using this interpretation, it becomes clear that we can extend
this result to all convex subsets of R2. In fact, we can pick any point within the
convex subset to be the point of contraction.

Example 2.4. The unit circle S1 is not contractible. Suppose S1 is contractible.
Then there exists a continuous homotopy H : S1 × [0, 1]→ S1 such that

H((cos s, sin s), 0) = (cos s, sin s) and H((cos s, sin s), 1) = (cos s0, sin s0).

Define H̃ : D→ S1 such that

H̃(t cos s, t sin s) = H((cos s, sin s), 1− t).
We note that every point in D except (0, 0) can be uniquely represented in

the form (t cos s, t sin s), for t in (0, 1] and s in [0, 2π]. Also, at t = 0, we have

H̃(0) = H((cos s, sin s), 1) = (cos s0, sin s0), which is independent of the particular

value of s we choose. Thus our function H̃ is well defined, and

H̃(cos s, sin s) = (cos s, sin s).

Thus we have a continuous H̃ : D → S1 such that for all x in S1, we know
H̃(x) = x, i.e. there exists a continuous function from the disk to the circle that
also fixes the boundary of the disk.

Divide S1 into three congruent arcs A,B and C. Because H̃ is continuous, it
can be shown that there exists a δ such that there are no a, b, c satisfying H̃(a) ∈
A, H̃(b) ∈ B, H̃(c) ∈ C and

|a− b|, |b− c|, |c− a| < δ.

Tile the disk D with triangles whose side lengths are all less than δ. At the
boundary of the disk, let arcs of the unit circle be the third ”sides” to the tiling
triangles. For each triangle, color red the vertices that H̃ maps to points in A, blue
the vertices that H̃ maps to points in B, and green the vertices that H̃ maps to
points in C. By the above claim, since the side lengths are less than δ, no triangle
should have three different colored vertices. Let edges that lie between vertices of
the same color have the value 0, and let edges that lie between vertices of different
colors have the value 1.
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Let the value of a triangle be the sum of its three edges. We note that for any
triangle, if all three vertices are different, the sum of the edges of the triangle is
3 ≡ 1 (mod 2). If there are two of the same color, then the sum of the edges is
2 ≡ 0 (mod 2), and if there are three of the same color, then the sum of the edges
is also 0 (mod 2). Therefore, since we have no triangles all three different colors,
the total sum of all the triangles in our tiling should be 0 (mod 2).

We note that in our sum of the triangle values of the tiling, each edge that is
not an arc of the unit circle, is double counted, thus their sum does not contribute
to the total sum (mod 2). The edges on the boundary of D are single-counted,

however, and thus they do contribute to our sum. By our definition of H̃, the
points on the boundary of the disk map to themselves, thus all of the edges on the
boundary have value 0, except for the three edges that contain the intersections
of the three arcs, which have value 1. Thus the boundary edges contribute a total
of 3 ≡ 1 (mod 2) to our sum. Thus our total should be ≡ 1 (mod 2). This is a
contradiction, thus S1 is not contractible. �

Definition 2.5. A subspace A of X is a deformation retract of X if there exists a
function r : X → A such that for all a in A, r(a) = a, and r is homotopic to the
identity function on X.

Alternatively, we can say that a subspace A is a deformation retract of X if there
exists an H : X × [0, 1] → X such that for all x in X and for all a in A, we have
H(x, 0) = x,H(x, 1) ∈ A, and H(a, 1) = a.

Definition 2.6. Let X be a topological space. Then we define the cone of X to
be C(X) = X × [0, 1]/(x, 1) ∼ (y, 1).

We note that D is the cone of S1. The argument used in the proof that S1 is not
contractible can be generalized to the following: a space X is contractible only if it
is a deformation retract of C(X).

Lemma 2.7. If A is a deformation retract of X and A is contractible, then X
must also be contractible.

Proof. Since A is a deformation retract of X, we know there exists a homotopy
F : X × [0, 1] → X from the identity function on X to a function r : X → A.
Moreover, since A is contractible, there exists a homotopy G : A× [0, 1]→ A from
the identity function on A to a constant function valued at some point a0 in A. Let

H(x, t) =

{
F (x, 2t) if 0 ≤ t ≤ 1/2
G(r(x), 2t− 1) if 1/2 ≤ t ≤ 1

Due to the fact that F (x, 1) = r(x) = G(f(x), 0) for all x, the two continuous
functions F and G glue together, and thus form a continuous function. This is
because X × [0, 1/2] and X × [1/2, 1] are both closed sets, and gluing functions
along closed sets preserves continuity.

We note H(x, 0) = F (x, 0) = x, and H(x, 1) = G(r(x), 1) = a0, thus H is a
homotopy from the identity function on X to the constant function to a0. �
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3. Graphs

Within this paper, we will want to consider graphs and other graph-like objects,
namely simplicial complexes, as topological spaces. These objects are combinatorial
in nature, however, thus in order to treat them as topological spaces, we will give
a method of embedding them into Rn.

Definition 3.1. A graph G is a collection of sets of pairs of elements. Each set A
in G is known as an edge. A vertex of G is any element of A, where A is a set in G.

Usually, graphs are defined by a set of vertices V and a set of pairs of vertices,
or edges, E. We present the above nonstandard definition of graphs in order to
emphasize the fact that graphs are special cases of simplicial complexes, on which
we will further elaborate later in this paper.

Although some graphs cannot be embedded into R2, i.e. they cannot be drawn
in two dimensions in such a way that no edges intersect, all graphs can be embedded
in R3. One way to achieve this is to represent all of the vertices of the graph as
distinct points on the x-axis. For each edge that is in the graph, draw a semicircle
between the corresponding vertices on the x-axis, and rotate the semicircle about
the x-axis by some angle αi. As long as all of the αi are different, then the edges
of our embedding will never intersect except at the vertices, as desired.

Definition 3.2. Let T be a finite tree. We define T ′ to be the tree obtained by
removing all vertices of degree one and their corresponding edges. These vertices
and their edges are the leaves of T .

Lemma 3.3. If a graph is a finite tree, then it is contractible.

Proof. Let T be a finite tree. Consider the tree T ′. It is clear that T ′ is a deformation
retract of T , since by definition, each leaf of T has only edge, thus we can always
construct a homotopy such that all vertices and edges shared by T and T ′ remain
constant, and all points on the leaves of T move at a constant rate along their only
edges to their only adjacent vertices.

Assume for the sake of strong induction that all trees with k or less vertices
are contractible. Consider a tree T with k + 1 vertices. Construct the tree T ′ by
removing all of T ’s leaves. We note that T ′ must have k or less vertices, thus, by
the inductive hypothesis, T ′ is contractible. But T ′ is a deformation retract of T ,
thus, by a previous lemma, T is contractible also.

We note that in the base case of k = 1, the tree is simply a single vertex, which
is trivially contractible. By strong induction, the lemma is thus true for all trees. �

Lemma 3.4. All automorphisms of trees have fixed points and/or fixed edges.

Proof. Let T be a finite tree. Consider the tree T ′. We note that any automorphism
of a tree preserves the degree of the vertices being moved, thus leaf vertices can
only be moved to other leaf vertices.

This implies that for any automorphism of T , there exists an automorphism of
T ′ such that the vertices of T ′ move to the same locations as their corresponding
vertices do in the original tree T .

Thus we can inductively reduce our automorphism to automorphisms of T ′, T ′′,
and so on until we obtain an automorphism of a single edge or vertex. The tree is
finite, so this process will necessarily end. The edge or vertex maps to itself, thus
it maps to itself in the original automorphism of T . �



EVASIVENESS OF BIPARTITE GRAPH PROPERTIES 7

4. Simplicial Complexes

We will now extend the previous ideas involving graphs to more general objects
known as simplicial complexes. In particular, we note that graphs can be seen as
simplicial complexes whose largest sets are restricted in size to two elements. For
the intents of this paper, we need only consider finite simplicial complexes, thus
whenever we mention simplicial complexes, finiteness can be assumed.

Definition 4.1. A simplicial complex is a non-empty collection of sets K such that
if a set B is in K and A is a subset of B, then A is in K. A vertex of K is any
element of A, where A is in K.

As noted in the previous section, we will often consider simplicial complexes
as topological spaces. However, simplicial complexes are abstract combinatorial
objects with no topology. Thus we will consider the geometric realization of sim-
plicial complexes, defined as follows: let K be a simplicial complex with vertex set
{v1, . . . , vn}. Consider the standard basis {~e1, . . . , ~en} of Rn. The geometric real-

ization K̃ of K is the subset of Rn that is the union over all A = {vi1 , . . . , vik} ∈ K
of all points

{λi1 · ~ei1 + · · ·+ λik · ~eik |λi1 + · · ·+ λik = 1, 0 ≤ λi1 , . . . , λik ≤ 1}.

Definition 4.2. Let K be a simplicial complex, and let v be a vertex of K. Then
the set K minus v, and the Link of K at v are, respectively,

Kv = {A ∈ K|v /∈ A} and LinkvK = {A ∈ K|v /∈ A,A ∪ {v} ∈ K}.

Example 4.3. In the specific case where the simplicial complex K is simply a
graph, we note that Kv is the graph without the vertex v or any of the edges
connected to v. The LinkvK is the set of all vertices that are connected to the
vertex v.

Later in this paper, we shall find that it is incredibly useful to know if the topol-
ogy on a given simplicial complex is contractible. Although there is no algorithm
to determine whether or not a simplicial complex is contractible, we do have tools
at our disposal, such as the following lemma.

Lemma 4.4. If there exists a v such that Kv and LinkvK are contractible, then
K is contractible.

Proof. We first note that any simplicial complex K can be represented as the
union of Kv ∪ C(LinkvK). If LinkvK is contractible, then we know there exists
a function r : C(LinkvK) → LinkvK such that r is homotopic to the identity
function on C(LinkvK) and r(x) = x for all x in LinkvK. Let r̃ : K → Kv be a
function such that

r̃(x) =

{
x if x ∈ Kv

r(x) if x ∈ C(LinkvK).

We note that LinkvK is a subset of Kv, and r(x) = x for x in LinkvK, thus our
r̃ is continuous. We note that r̃ is also homotopic to the identity function on K,
thus we see that Kv is a deformation retract of K. By a previous lemma, we see
that if Kv is contractible, then so is K. �
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Definition 4.5. The Euler characteristic of a simplicial complex K is

X (K) =
∑

A∈K
(−1)|A|−1.

Example 4.6. It is easy to see that the Euler characteristic of a single vertex is
simply 1. We will note, but not prove, that given two simplicial complexes K and
L, if K is homotopic to L, then X (K) = X (L). In particular, this means that if a
simplicial complex K is contractible, then X (K) = 1.

Definition 4.7. Given simplicial complexes K and L, a simplicial map f : K → L
is a map from vertices of K to vertices of L such that if A is in K, then f(A) is in L.

We note that every simplicial map K → L gives a continuous map K̃ → L̃ from
the geometric realization of K to the geometric realization of L. The converse of
this statement is false. However, it is true in a loose sense if we consider equivalence
of maps under homotopy.

Definition 4.8. Given a simplicial complex K and a simplicial map f : K → K,
we define a new simplicial complex Fix(f,K) whose simplices are unions of the
orbits of f that are also simplices in K.

The key thing to note about the Fix(f,K) is that it’s geometric realization is
essentially the collection of fixed points of the geometric realization of K under f .

Theorem 4.9. If K is contractible, then for all simplicial maps f : K → K, it is
true that X (Fix(f,K)) = 1.

Corollary 4.10. If K is contractible, then every automorphism f of K has a fixed
point. As noted before, the geometric realization of Fix(f,K) is essentially the
collection of all fixed points of the geometric realization of K under f . But since
K is contractible, we know that X (Fix(f,K)) = 1 which implies that the simplicial
complex Fix(f,K) is non-empty, thus f must have a fixed point.

Corollary 4.11. Let K be a contractible simplicial complex with automorphism f :
K → K which is transitive on vertices. Then K is a simplex. Since f is transitive
on vertices, the only possible vertex of Fix(f,K) is the orbit of f containing all
vertices of K. But X (Fix(f,K)) = 1 6= 0 thus the orbit of all vertices must be a
vertex of Fix(f,K). Thus all of K’s vertices are contained in one simplex.
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5. Simplicial Complexes from Monotone Graph Properties

The goal of this section is to prove the bipartite case of the Aanderaa-Karp-
Rosenburg conjecture. The primary trick in doing so is to note that given any
monotone graph property, we are always able to construct a simplicial complex
corresponding to that property. In doing so, we translate the combinatorial prob-
lem of determining the evasiveness of a property into a topological problem of
determining whether a given space is contractible.

Definition 5.1. Let G be a graph with a set of unknown possible edges E. Let P
be a monotone graph property. We define the simplicial complex representation
of P , which we shall denote by K(P,E), as following: a subset S of E is in K(P,E)
if the graph with S’s edges does not satisfy P .

We note that K(P,E) is indeed a simplicial complex due to the fact that P is
monotone. Thus if S is in K(P,E), then any subset of S must also be in K(P,E).

Theorem 5.2. If P is non-evasive then K(P,E) is contractible.

Proof. Assume, for the sake of strong induction, that all simplicial complexes
with k or less vertices of non-evasive graph properties are contractible. Consider a
simplicial complex K with k+1 vertices constructed from a graph G with unknown
edges E and a non-evasive graph property P .

We first note that each time we query and receive an answer, we essentially reset
the game with a new simplicial complex. In other words, we can combine any graph
property and known sets of present and non-present edges into a new game with
property P ′ and graph G′ which is equivalent to playing the game with P and G
knowing that certain edges are or are not present.

Pick a vertex v in K and query for it. Since P is non-evasive, the new property
P ′ we obtain is still non-evasive, regardless of what answer we receive. If the edge
v is present in the graph, then the new simplicial complex we must consider is
LinkvK. Otherwise, the edge v is not in the graph, and we are left with Kv. In
either case, the new simplicial complex has necessarily k or less vertices. By our
inductive hypothesis, both LinkvK and Kv are contractible, which implies, by a
previous lemma, that the entire simplicial complex K must also be contractible. �

Theorem 5.3. Every bipartite graph property is evasive.

Proof. LetG be a bipartite graph with partitionsA = {a1, . . . , an}, B = {b1, . . . , bm},
and unknown edges E. Suppose a graph property P is non-evasive. Construct the
simplicial complex K = K(P,E).

Let f : K → K be a simplicial map such that f(aibj) = aibj+1. For any i
such that 1 ≤ i ≤ n, the sequence of edges aib1, . . . , aibm is an orbit of f . If for
a particular i0, the set {ai0b1, . . . , ai0bm} is a simplex of the complex K, then the
set {aib1, . . . , aibm} must also be a simplex of K, since the associated graphs must
all be isomorphic to each other regardless of what value of i we choose, thus if one
of the graphs did not satisfy P , then they would all not satisfy P . Therefore if the
set {aib1, . . . , aibm} is a vertex of Fix(f,K) for i = i0, then it is a vertex for all i.

This result can be generalized as follows: we note that any orbit of f is entirely
defined by an initial set of edges {ai1bj1 , . . . , aikbjk}. Given this set of edges, the
orbit is obtained by simply iteratively adding 1 to all of the indices of the b vertices,
yielding

⋃n
i=1{ai1bj1+i, . . . , aikbjk+i}. Thus let us define the degree of an orbit by
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the number of edges in its initial set of edges. We note that by this definition, the
orbits mentioned in the previous paragraph are the degree 1 orbits of f .

By similar logic to before, if one orbit of degree r is in Fix(f,K), then all orbits
of degree r must be in Fix(f,K) as well, since their corresponding graphs are all
isomorphic to each other. In fact, because P is a monotone property, all orbits of
degree ≤ r must also be in Fix(f,K), since if the graph of a degree r orbit did not
satisfy P , any subgraph of that graph cannot satisfy P either.

Let r be the largest degree of an orbit. We note that the Euler characteristic of
Fix(f,K) is

X (Fix(f,K)) = n−
(
n

2

)
+

(
n

3

)
− · · ·+ (−1)r−1

(
n

r

)
.

By initial assumption, P is non-evasive, thus X (Fix(f,K)) = 1. Using basic
properties of binomial coefficients, we have

1− n+

(
n

2

)
−
(
n

3

)
+ · · ·+ (−1)r

(
n

r

)
= 0

=⇒ 1−
[
1+

(
n− 1

1

)]
+

[(
n− 1

1

)
+

(
n− 1

2

)]
−· · ·+(−1)r

[(
n− 1

r − 1

)
+

(
n− 1

r

)]
= 0

=⇒ (−1)r
(
n− 1

r

)
= 0.

But this is impossible for r < n, thus we know r = n. But if this is true, then
the orbit of f containing all vertices of K is also a simplex of K, i.e. the set of all
edges in G is in K, which implies that the complete graph does not satisfy P . But
since the property is monotone, this means that no graph satisfies P , which means
that P can only be the trivial graph property. Therefore, all non-trivial, monotone
bipartite graph properties are evasive. �
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