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ABSTRACT. We give an exposition of the Grothendieck-Riemann-Roch theorem for algebraic varieties. Our proof
follows Borel and Serre [3] and Fulton [5] closely, emphasizing geometric considerations and intuition whenever
possible.
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1. INTRODUCTION

The familiar Riemann-Roch formula for a non-singular projective algebraic curve (equivalently in the com-
plex case, a Riemann surface) equates algebraic/analytic information, in the form of dimensions of global
sections of line bundles, to the purely topological genus:

h0(D)− h0(K− D) = deg D− g + 1

for a divisor D, where g is the genus of the curve and K the canonical divisor.

This situation of equating a topological invariant with one derived from additional structure is a very
familiar one in of geometry, with examples ranging from de Rham cohomology to the Grothendieck trace
formula. Usually the idea is that the more tractable algebraic/analytic structure helps one get a handle on
the slippery topology, though not always (cf. applications of the Atiyah-Singer index theorem to partial
differential equations).

There is one very broad (albeit somewhat ill-defined) class of examples which are grouped with Riemann-
Roch, often referred to in general as “Riemann-Roch formulas.” It is hard to pin down a definition, but
very broadly (and only semi-accurately), such formulas derive their algebraic/analytic invariant from sheaf
cohomology, and their topological invariant is the genus of the geometric object under consideration. Often
the notions of “sheaf cohomology” and especially “genus” are taken in considerable generality; e.g. the
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Riemann-Roch theorem for number fields first formulated (for global fields) in Tate’s thesis, though not yet
explicitly in the terms above.

Restricting ourselves to the classical case and the algebraic world, generalizations of the theorem for curves
arise naturally. How do we handle jumping a dimension? If we reformulate the theorem for curves this
way:

χ(OX(D)) = deg D + χ(OX)

it becomes apparent.1 We can more or less induct: if X becomes a non-singular projective surface rather
than a curve, we can use exact sequence associated to the inclusion of a divisor

0→ OX → OX(D)→ i∗OD(D)→ 0

to write χ(OX(D)) = χ(OX) + χ(i∗OD(D)) by additivity in short exact sequences. The first term is the
arithmetic genus, which is promising. The second term’s associated line bundle is tautologically the same
as the line bundle on D associated to the self-intersection product OD(D · D), which by Riemann-Roch for
curves has Euler characteristic χ(OD) + D · D.2 We use here the fact that our last formulation of Riemann-
Roch for curves holds even for singular curves.3

Using the fact that the degree of the anticanonical class is the topological Euler characteristic of the ana-
lytification, we find that the former term is −KD/2, or equivalently −(K · D + D · D)/2 by adjunction. So
finally we have on surfaces that

χ(OX(D)) = χ(OX) +
D · D− K · D

2
.

In principle, this can be continued to higher dimensions, if we were able to continue to cleverly apply
adjunction to compute arithmetic genus of the divisor.

There is an equally natural way to generalize in an orthogonal direction: if we take as fundamental not the
divisor D but its associated line bundle L = OX(D), notice that we can still write down the formulas, since
we have an “inverse” in the first (algebraic) Chern class, with c1(L) = D recovering the divisor. We can
then imagine extending the formulas to a general algebraic vector bundle E.4 For example, the formula for
surfaces is

χ(E) =
c1(E)2 − 2c2(E) + c1(E)c1(TX)

2
+ χ(OX)rk(E)

where TX is the tangent bundle, which clearly generalizes the line bundle case above. To prove it, by the
complex splitting principle, we need only show the first term on the RHS above is additive in short exact
sequences.

One thing to note is that we can actually write χ(OX) as a polynomial of Chern classes as well, which
should come as no surprise given that, as in the cohomological case, every characteristic class can be written
in terms of them. Explicitly, for surfaces,

χ(OX) =
c1(TX)

2 + c2(TX)

12
,

a result known as Noether’s formula. In general, as we move up in dimension of the variety, we should
continue to expect χ(E) to be expressible as a polynomial of Chern classes of E and the tangent bundle.

1One should think of the algebraic/holomorphic Euler characteristic χ(OX) as a genus of sorts. Indeed, it is Hirzebruch’s
preferred definition of “arithmetic genus” for general varieties, over the one corresponding to the familiar geometric genus motivated
from topology. This is because it is a genus in the sense of genera theory: a homomorphism from the complex cobordism ring - i.e. it
is multiplicative on products and additive on disjoint union. It is thus apparent that it is a genuine topological invariant. Indeed, in
the case of curves, we may replace it with χ(X)/2, in terms of the topological Euler characteristic.

2The notation D ·D to denote an integer is abuse of notation; we are making the natural association of zero-dimensional cycles
with their degree - that is, the evaluation of the associated cohomology class on the fundamental class of the analytification. Fulton
denotes this homomorphism by an integral sign

∫
X for this reason.

3Alternately, prove it for divisors represented by smooth curves and extend using the natural homomorphism Pic(X)→ K(X).
4Throughout this paper we will implicitly use the identification of algebraic vector bundles (as geometric objects, i.e. schemes

over the base X with appropriate local affine trivializations and transition maps) with locally free sheaves, justified by the equivalence
of categories. Hence, for example, the use of the common double meaning of “line bundle” in the algebraic setting.
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These lines of generalization find full realization in the Hirzebruch-Riemann-Roch theorem, which says
that for a complete nonsingular variety X with a vector bundle E,

χ(E) =
∫

X
ch(E) · td(X)

where the Chern character ch(−) and the Todd class td(−) are formal power series of certain Chern classes
(and in practice polynomials, by dimensionality considerations) which satisfy the nice formal properties we
desired in the discussion above. This theorem, and in fact even far less general statements like Noether’s
formula, does not have a short direct proof. Hirzebruch’s original proof was for the special case of com-
plex algebraic manifolds, usng analytic techniques and cohomological Chern classes instead of algebraic
cycles.[9] The result actually holds in far more generality, in both the algebraic case (which we cover here),
where the formulation with algebraic cycles is a strict refinement of the cohomological one, and in the
complex one, where it holds for arbitrary complex manifolds by the Atiyah-Singer index theorem.

Grothendieck’s insight in the algebraic case was to take a relative point of view, observing that the “degree”
on the RHS is a special case of pushforward. If the theorem could be written as a certain commutative
diagram claiming naturality of a certain map under pushforward, then one could attack the problem by
factoring morphisms into simpler pieces and tackling each individually. The main algebraic innovation
which enabled him to do this was the Grothendieck group, giving the needed structure to the vector
bundles on which the theorem hinged, and marking the nascency of algebraic K-theory.

In this paper, we will give an exposition and proof of the original statement of Grothendieck-Riemann-Roch
as given in, e.g., [8].

Theorem 1.1 (Grothendieck-Riemann-Roch for varieties). If X and Y are nonsingular varieties,5 and f : X → Y
is a proper morphism, then we have the following commutative diagram:

K(X) A(X)⊗Q

K(Y) A(Y)⊗Q

ch(−)·td(X)

f∗ f∗
ch(−)·td(Y)

2. FOUNDATIONS

To prove theorem 1.1, we must first develop some of the theory behind the undefined objects in its state-
ment. We will work in some more generality than necessary for our particular application, following the
philosophy of Lang.

2.1. Algebraic cycles and the Chow groups. We give a brief review of the intersection theory of cycles in
our restricted case.

On any variety X, we consider the additive group of algebraic cycles, modulo rational equivalence, which
we will denote by A(X). A(X) is then naturally graded by dimension into what are sometimes referred to as
the Chow groups, A0(X), A1(X), . . . , Ak(X), where k = dim X. Equivalently, we can grade by codimension
as Ak(X), . . . , A1(X), A0(X).6

We have the flat pullback and proper pushforward, which are exactly what they sound like: for f : X → Y
a flat map, we have f ∗ : A(Y) → A(X) given by simply taking preimages of the subschemes, and for
f : X → Y proper, we have f∗ : A(X) → A(Y) given by the image of the component subvarieties, with
appropriate multiplicities, chosen to be nonzero only when the dimension of the subvariety is not collapsed.

These have nice functorial properties. For details, see [5]. Notice that proper pushforward preserves dimen-
sion (the first grading mentioned). Flat pullback, if we add the stipulation of constant relative dimension

5In this paper, a variety is over an algebraically closed field.
6There are alternate Chow groups given by any (e.g. algebraic, numerical, etc.) equivalence relation on cycles, but rational

equivalence is the most common, and gives the finest (in the sense of not coarse) results.
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to the morphism, preserves codimension (the second grading). In our restricted context of varieties, this
is always true; see Stacks Project section 28.29. As noted earlier,

∫
X , the degree homomorphism, is just

pushforward to the point Spec k, where k is the base field.

In fact, while we need our morphism to be flat to pull back cycles, we can use another moving lemma
to obtain a pullback ring homomorphism whenever source and target are regular varieties, by shifting
the component cycles suitably. See theorem 5.8 in [4]. This works in the quasiprojective case. Fulton’s
treatment in [5] allows intersection products by iterating intersections with Cartier pseudo-divisors, which
can be pulled back arbitrarily, extending this to all varieties. What is important is that in our context, we in
fact have arbitrary pullbacks.

There is a commutative bilinear intersection product on A(X), · : Ak(X)⊗ Al(X) → Ak+l(X), which takes
the classes represented by transversely intersecting (for a suitable notion of transverse) cycles to the class
of their actual geometric intersection. In the case where X is regular, this induces a graded ring structure
on A(X). The resulting ring is sometimes called the Chow ring, and denoted A∗(X) to emphasize the ring
structure.7

Pullback actually preserves the ring structure as well, as follows from the geometric moving lemma ap-
proach (in cases where it applies). That is, we have that f ∗ : A∗(Y) → A∗(X) is actually a homomorphism
of graded rings. This of course fails for trivial reasons for pushforwards.

The ring A∗(X) is essentially an algebraic version of cohomology. In the complex case, there is in fact a
natural homomorphism of graded rings A∗(X) → H2∗(Xan) on algebraic manifolds given by sending a
cycle class represented by a subvariety to the homology class represented by its analytification, and then
to its Poincaré dual. In general, singular homology spectacularly fails to be generated by the classes of
subvarieties,8 so this is not surjective. On the other hand, as we mentioned, algebraic cycles are in general
a finer theory than cohomology, so this map is not usually injective either.9

2.1.1. Algebraic Chern classes. In analogy with cohomological Chern classes, we have a finer algebraic theory
of Chern classes c0(E), c1(E), c2(E), . . . , cr(E) of a rank-r vector bundle E→ X, which reside in the gradings
A0(X), A1(X), . . . , Ar(X) respectively. Geometrically, they represent the cycle classes of degeneracy loci of
tuples of global sections (though this is only actually true for bundles generated by such sections), so we
naturally get the equality c0(E) = 1 = [X] ∈ A0(X). More nebulously, we can think of them as recording
the “twisting” of the bundle. Indeed, the first Chern class of the line bundle associated to a divisor satisfies
c1(OX(D)) = D. We also define the total Chern class c(E) = 1 + c1(E) + . . . + cr(E).

Chern classes are natural over pullback, and the total Chern class is multiplicative in short exact sequences,
a result known as the Whitney sum formula.10

When E is a direct sum of line bundles
⊕

Li, we obtain c(E) = ∏(1 + c1(Li)). Again in analogy with the
topological theory, we have a splitting principle in which we can obtain a formal factorization (in a ring
extension of A∗(X)) like this even when E is not such a direct sum, as there is a space whose Chow ring

7For those interested in the construction of the intersection product, [4] chapter 5 gives an accessible account in the smooth
case using the classical “moving lemma” approach, which moves representatives of the two rational cycle classes until they intersect
transversely. For perfect fields, this is general enough, but if the base field is not perfect, regular varieties are not necessarily smooth.
[5] gives a more sophisticated approach; a more refined and general “intersection product” is given in chapter 6, and the ring structure
for any nonsingular variety is developed in chapter 8 using a Künneth-type exterior product formula together with the pullback of
the diagonal map, in strong analogy with the cup product in cohomology.

8Iintegral homology is not even in general generated by the classes of topological (i.e. not necessarily complex) submanifolds.
Complex submanifolds, which by GAGA are equivalently subvarieties, are a small subset of these, and these classes always fall into
the middle term Hk,k in the Hodge diamond. Indeed, the statement that this middle term is precisely their image (when taking rational
coefficients) is the Hodge conjecture.

9That is, the adequate equivalence relation of rational equivalence is in general strictly finer than that of homological equiva-
lence, where we take our Weil cohomology theory to be Betti cohomology (though this conjecturally does not matter). The question
of when the two do coincide is unresolved; one case where A∗(X) ∼= H2∗(Xan) is for spaces with affine stratifications, e.g. complex
projective space.

10The above properties (naturality, Whitney sum, and value on line bundles) in fact give an axiomatic characterization of Chern
classes.
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provides precisely the extension necessary.11 As a result, we can always treat c(E) as if it factors “linearly,”
and any formula which holds for a sum of line bundles will hold in general. More specifically, we can treat
the total Chern class as if it factors into (1 + α1)(1 + α2) . . . (1 + αr) in some ring extension. The αi are often
called Chern roots.

2.2. Algebraic K-theory and G-theory. The behavior of the total Chern class given by the Whitney sum
formula puts it into a wide class of functions which are additive (or in this case, multiplicative) on short
exact sequences. To capture this additivity formally, Grothendieck was led to the beginnings of algebraic
K-theory. We give a brief review of the fundamental elements.

Recall that K0(X) is the free abelian group on algebraic vector bundles over X, modulo short exact se-
quences. As such, it is the universal structure for additive functions on vector bundles, in the sense that
such a function factors through a morphism from the group. Additionally, there is in fact a ring structure
on K(X)12 given by tensor product. Locally free sheaves are flat, so this is consistent with the short exact
sequences condition.

If we expand from the world of locally free to all coherent sheaves, we get a group G(X) under the same
conditions, called the Grothendieck group of the variety. On a regular variety, it is a classic result, the
“global version” of Hilbert’s syzygy theorem, that every coherent sheaf has a finite projective resolution, so
in this case, with some extra work, we actually have K(X) ∼= G(X). Tensoring with coherent sheaves is not
in general exact, so there is no natural ring structure on G(X),13 but in the regular case we can transport the
structure via isomorphism. The resulting formula for multiplying coherent sheaves F and G is

[F · G] =
∞

∑
k=0

(−1)k[Tork
OX

(F ,G)],

adding on all the derived functors of the tensor product to correct for the lack of exactness.14

In our regular setting, we will consider all coherent sheaves for maximal generality, but use K(X) to stand
in for G(X) as an abuse of notation so that we can move freely between the two worlds.

Of course K(X) and G(X), being algebraic analogues of cohomology theories, can be pulled back. In G-
thery, we use the formula f ∗ = OX ⊗ f−1OY

f−1 for flat morphisms, but since we have the isomorphism with
K(X) and the well-known pullback of vector bundles, we can actually have a pullback homomorphism of
rings f ∗ for arbitrary morphisms - just as with the Chow ring.15

As with algebraic cycles, there is also a pushforward theory, but only in G-theory (and hence K-theory in
the regular case). Given f : X → Y, we have the direct image sheaf f ∗. Under proper maps, the direct image
of a coherent sheaf is coherent. This commutes with direct sum (trivially, by definition of direct image), but
cannot directly give the pushforward, since it is not exact. We must again use the alternating sum trick of its
derived functors, the higher direct images, denoted Ri f∗, a sort of “global version” of sheaf cohomology.16

It is a formal verification to see that as usual, the alternating sum will give exactness, but to show we can
do this, we need the following result:

11Specifically, we construct a flag variety Y so that Y → X induces an injective pullback A∗(X) → A∗(Y), such that the total
Chern class of E factors in the larger ring. For details and a very nice treatment of algebraic Chern classes in general, see [4] chapter 7.

12We will just drop the zero since we have no use for higher algebraic K-theory in this paper.
13For this reason, sometimes G(X) is denoted K0(X), in analogy with how homology has no natural ring structure while

cohomology does.
14Algebraically, the regularity condition more or less ensures that this sum is finite. This alternating sum of derived functors to

get a correction for non-exactness is a common construction, e.g. the Euler characteristic. One might recognize this instance as being
very similar to Serre’s intersection multiplicity formula, and they are indeed related since once can construct very general intersection
products using K-theory; see this exposition on Daniel Dugger’s website for a restricted version of this. We see another example of
this type of alternating construction below in this same section.

15For perfect morphisms f , we can write out this pullback explicitly using an alternating sum of Tor functors for G(X), due to
this isomorphism. This provides another example of the utility of the alternating derived functors trick.

16Indeed, sheaf cohomology is just the higher direct image sheaves of the map to Spec k. In the general case, the Leray spectral
sequence converges to sheaf cohomology on the source.
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Theorem 2.1. Given a proper morphism of regular varieties f : X → Y and a coherent sheaf F on X, Ri f∗(F ) is
coherent.

Proof. First recall that kernels, cokernels, and extensions of coherent sheaves are also coherent. Hence by
the long exact sequence of the derived functor the same applies to the property of having all higher direct
images coherent under a given map - i.e., being sandwiched in a long exact sequence by sheaves with the
property implies the property.

We use the typical trick to reduce to projective morphisms: Chow’s lemma gives us a scheme X′ over Y
equipped with a projective surjection h : X′ → X over Y which is an isomorphism on an open set U, so that
f ′ : X′ → Y is projective, and everything commutes. Then for F coherent on X, the kernel and cokernel
of h∗h∗F are supported on X \U. All of these are coherent, since the projective pushforward h∗ preserves
coherence by assumption and h∗ does in general. We apply the classic technique of noetherian induction
to see that it suffices to prove, by the point about sandwiching above, that h∗h∗F has all coherent higher
direct images, since we can assume coherence under higher direct image of the lower-dimensional kernel
and cokernel by inductive hypothesis.

Indeed, we have in general that the Grothendieck spectral sequence Ei,j
2 = Ri f∗Rjh∗h∗F converges to

Ri+j f∗h∗h∗F = Ri+j( f ′)∗h∗F . The projective case gives us that the latter is coherent. If j > 0, Ri f∗Rjh∗h∗F
is coherent by the inductive hypothesis. To see this, observe that higher direct images are local on the target,
and that since h is an isomorphism on U, its higher direct images are supported away from it, so are strictly
lower dimensional. By sandwiching in the exact sequence in low degrees, the full result follows.

So we have reduced to verifying the projective case. If X is projective over Y, let i : X → Pn
Y be the closed

immersion and π : Pn
Y → Y be the projection.17 The higher direct images of a closed immersion simply are

zero, so it suffices to prove that Riπ∗ preserve coherence.

We can assume Y is affine by localness of coherence. Then by Hilbert’s syzygy theorem, every coherent
sheaf on X = Pn

Y has a resolution by powers of the twisting sheaves. By the earlier discussion, it suffices
to prove that Riπ∗OPn

Y
(k) are coherent. Since we can take Y affine, these can be explicitly computed using

Čech cohomology to be OY ⊗ Hi(Pn
Y,OPn

Y
(k)), which is coherent.

This result actually holds in much more generality, over any locally noetherian scheme by basically the
same proof; see Stacks Project 55.19, from which this proof was adapted, or EGA III 3.2. �

The higher direct images commute with direct sum because direct image does, so we have the pushforward
in K-theory f∗ : K(X)→ K(Y) given by

[F ] 7→
∞

∑
k=0

(−1)k[Rk f∗(F )].

2.3. Chern character. Our motivation for introducing K(X) was to give a structure to capture the behavior
of the multiplicative total Chern class c(E) of a vector bundle, and we indeed have that c : K(X)→ A∗(X)×

is a homomorphism, since existence of stable inverses allows us to extend linearly. This, however, converts
an additive theory to a multiplicative one, and essentially forgets the tensor product and ring structure.18

To correct this, note that we have the pleasant relation c1(E⊗ F) = c1(E) + c1(F). (Recall the motivation
from divisors corresponding to line bundles.) For line bundles, at least, it occurs to us then that if we
could map E → ec1(E), this would map multiplication to multiplication, undoing the “logarithm”-type

17Recall that Pn
Y = Pn

k ×Y.
18It actually is possible to obtain a modification called the augmented total Chern class (where the constant 1 term is replaced

by the rank of the bundle) which can be made into a ring homomorphism into a new λ-ring structure on A∗(X)×, where former
multiplication becomes addition and a new structure becomes multiplication. This has little relation to the ring homomorphism we
define via the Chern character, but Riemann-Roch without denominators (see “Concluding Remarks”) can be formulated this way.
See [7] for details.
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effect of the first Chern class.19 Moreover, for a direct sum of line bundles E1 ⊕ . . .⊕ Er, we could map to
ec1(E1) + . . . + ec1(Er) and have addition and multiplication go where they should. By the splitting principle,
we can extend this in general to Chern roots, giving us the Chern character:

ch(E) = eα1 + eα2 + . . . + eαr .

To make sense of the exponential, of course, we must use its formal power series, with non-integral coeffi-
cients, so this takes values in the rationalization A(X)⊗Q. Because it is symmetrical in the Chern roots, the
Chern character can be written in terms of the Chern classes, and indeed we can compute explicitly some
terms:

ch(E) = dim(E) + c1(E) +
c1(E)2 − 2c2(E)

2
+

c1(E)3 − 3c1(E)c2(E) + 3c3(E)
6

+ . . .

Notice that this is a finite series for every actual computation because of the finiteness of the grading. ch is
then a genuine ring homomorphism K(X) → A(X)⊗Q. We naturally extend its domain to K(X)⊗Q, in
which case it is a remarkable theorem that this is actually an isomorphism.20 See [5] section 15.2.

We sometimes write ch(F) instead of ch([F]) for a vector bundle or coherent sheaf F by abuse of notation.

2.4. Covariance, contravariance, and the Todd class. It is quite remarkable that K-theory and algebraic
cycles are both contravariant and covariant functors on regular varieties, for arbitrary and proper maps
respectively. Both of them are in a sense more “naturally” contravariant functors, since after all they are
both algebraic analogues of cohomology theories. This is reflected both in how the contravariant theory
preserves the ring structure, while the covariant one does not, and in how the covariant theory applies
to a more restricted class of morphisms. Hence the pushforward maps are somewhat exceptional objects,
and for this reason they are sometimes referred to as “shriek maps” (and, confusingly, denoted f!) or even
“Gysin maps” in analogue with the exceptional pushforward of that name in cohomology coming from
integration along fibers.21

It turns out that the Chern character is actually a natural isomorphism between the contravariant theories.
That is, we have the following commutative diagram.

K(Y)⊗Q A(Y)⊗Q

K(X)⊗Q A(X)⊗Q

ch

f ∗ f ∗

ch

This is simply a consequence of the functoriality of Chern classes with respect to pullback, so really contains
no new information not already practiced in the application of Chern classes. This is not the case for
pushforward, so there is no such immediate result.

However, in many applications of intersection theory, we wish to compute with respect to a pushforward
of a vector bundle on some parameter space; for example, the classical computation of 27 lines on a cubic
entails computing the pushforward of the Grassmanian of lines in P3. So even though the Chern character
does not appear to be a natural transformation of the covariant theories, it would be convenient to have
some analogue of the result.

19Indeed, one can put some formal weight behind our intuition/motivation for the Chern character using the formal group
laws associated to the Chern classes of K-theory and algebraic cycles; the former is the multiplicative group law and the latter the
simple additive one, so “logarithm” and ”exponential”-type maps go betwen them. If we pass to the topological setting, this is part of
a larger framework of Hurewicz-type homomorphisms on generalized cohomology theories given by ring spectra.

20Interestingly, this tight comparison of K(X) and A(X) once torsion is killed reflects a parallel in the algebraic/topological
dichotomy: just as A(X) is a finer but not as broad version of cohomology, there is Ktop(Xan) for complex X, and a natural map K(X)→
Ktop(Xan), neither generally injective nor surjective, which is even natural with respect to pullback/pushforward. Geometrically, this
is just the fact that not every topological complex vector bundle can be given algebraic (or even holomorphic structure), but those that
do often have multiple algebraic structures (think of twisting sheaves on a real circle, all equivalent to the Möbius bundle, as a toy
example for intuition). The existence of the parallel isomorphism Ktop(X)⊗Q ∼= H2∗(X, Q) for complex manifolds is another piece in
the interesting dictionary between Riemann-Roch theorems in the algebraic and complex worlds.

21Warning: Fulton uses “Gysin map” in quite a different way.
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Grothendieck-Riemann-Roch says precisely this analogue: from the diagram in theorem 2.1, ch is not a
natural transformation, but ch(−) · td(X) is. We drop the rationalization on K-theory because there is no
reason for it.22

td(X) is of course the Todd class, and is defined as follows: the Todd class of a vector bundle (or generally
an element of K(X)) is

r

∏
i=1

αi
1− e−αi

in terms of the Chern roots. As with the Chern character, the symmetry allows it to be written as a formal
power series in terms of the Chern classes:

td(E) = 1 +
c1(E)

2
+

c1(E)2 + c2(E)
12

+
c1(E)c2(E)

24
+ . . .

where again in practice this is actually finite due to nilpotence. The Todd class associated to X is defined as
td(X) = td(TX); simply the Todd class of its tangent bundle. The Todd genus is the degree

∫
X td(X).

The Todd class seems rather odd and arbitrary. It is difficult to give concrete motivation for it, but there are
some nice properties which may serve as our best substitute.

The primary light one should view it in is in the sense of a genus of a multiplicative sequence, which is
a general formal construction from algebraic topology. In the complex case, such a genus is a construc-
tion associated to a formal power series Q(x). Then as with the Todd genus, we can write out the class
∏ Q(αi) = K(c1, c2, . . .) as a function of the Chern classes (of a bundle) by symmetry. The rational number
which is the degree of the tangent bundle is then taken to be the genus. (The “multiplicative sequence”
in question is the sequence of homogenous parts of K.) The reason these are useful is that an equivalent
abstract formulation is that of a homomorphism from the complex cobordism ring ΩMU into the rationals,
meaning such genera are additive on disjoint unions and multiplicative on products of spaces, a property
not difficult to verify from the algebraic nonsense. See chapter 7 of these notes by Liviu Nicolaescu for a
lucid account of the details. As a simple example, the genus associated to the power series Q(x) = x can
be computed to be simply the topological Euler characteristic χ(X), for which these properties are familiar.
This intuition of course all only strictly applies in the complex case, so remember it is simply a motivating
framework.

The series for the Todd genus is clearly x
1−e−x , which is almost the generating function for the Bernoulli

numbers.23 The nice formal notion of genus above gives us some idea of why it may play a role in our
Riemann-Roch formula (from the beginning discussion of such formulas involving topological genera), but
why must it be this one?

Again remembering we are motivating from the complex case, it turns out that we can determine such
genera purely from their values on complex projective space: the Todd genus is characterized by having
value 1 on complex projective spaces.

First, the Todd genus should be 1 for a point, at least. Further, in theorem 2.1, if we take Y = Spec k in
general, and F a coherent sheaf, we find that the statement we recover is, as desired, Hirzebruch-Riemann-
Roch:

td(Y)ch
(
∑(−1)iRi f∗(F )

)
= ch

(
∑(−1)i Hi(X,F )

)
= χ(F ) =

∫
X

ch(F )td(X).

In particular, if k = C, X = Pk
C, F = OX , we obtain∫

X
td(X) = χ(OX) = 1

so this shows we need the Todd genus of complex projective space to be 1. We can even write out the
left-hand side as the coefficient of xn in Q(x)n+1, since we have the classical Euler sequence 0 → OX →

22Though, incredibly, again ch(−) · td(X) is also an isomorphism of groups if one passes to the rationalization. See [5] chapter
18, or [8] for a fuller account.

23Quote from my advisor: “If you figure out why, you’ll win a Fields medal.”
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O(1)n+1 → TX → 0. This condition on Q(x) uniquely determines that the formal series must be x
1−e−x ,

giving us an idea of how this works in general.

There is another, less foundational way to motivate the Todd genus: it is something of a “multiplicative
inverse” for the Chern character in the following sense: it is determined by the identity

r

∑
i=0

(−1)ich(∧iE∧) = cd(E) · td(E)−1.

where d is the dimension. Indeed, if we simply write everything out explicitly, noting that the Chern roots
of the ith exterior power are all the i-sums of the Chern roots, this is a short computation.24

Notice finally that if in Hirzebruch-Riemann-Roch we take F = OX , we get the formula
∫

X td(X) = OX
in general. Hence the Todd genus actually coincides with Hirzebruch’s arithmetic genus, or holomorphic
genus, we mentioned earlier. This fits with the classically known fact χ(OX×Y) = χ(OX)χ(OY).

3. FORMULAS IN ALGEBRAIC CYCLES AND K-THEORY

Before proceeding to the proof, we must prove three major formulas which hold in identical form for both
A(X) and K(X).

3.1. Excision sequences. These are straightforward: in analogy with cohomology, there are excision se-
quences for algebraic cycles and K-theory.

Theorem 3.1. If X is a regular variety and Y is a closed subvariety, we have the exact sequence of groups

K(Y)→ K(X)→ K(X−Y)→ 0.

Proof. The regularity condition is necessary only because this is true on the level of G-theory and coherent
sheaves with no additional assumptions. If i : Y → X and j : X − Y → X are the inclusion maps, the first
map is i∗ and the second map j∗.

First we show that the image of the first map is coherent sheaves whose support is Y: indeed, for any
coherentF supported on Y, by the Nullstellensatz, some power of the ideal sheaf I of Y annihilates it. Then
we have the filtration F ⊇ IF ⊇ I2F ⊇ . . . ⊇ 0. The factors in this filtration are naturally OX/I = i∗OY-
modules, so by inductively taking resolutions everything is indeed in the image of i∗. The converse is
immediate.

The fact that the second map is surjective is the foundational fact that a coherent sheaf defined on an open
set can be extended to a coherent sheaf on the whole variety; we can actually take j∗F since it is not difficult
to check that j∗ j∗ is actually the identity for open immersions.

To show exactness in the middle, we need only show that a sheaf is zero under j∗ iff it is supported on Y. If
it is supported on Y, j∗ vanishes. Conversely, if there is a point p off of Y so that the stalk there is nonzero,
the stalk there in X−Yafter applying j∗ is also clearly nonzero. �

Theorem 3.2. If X is a variety and Y a closed subvariety, then there is an exact sequence on the dimension-graded
Chow group, that is:

A∗(Y)→ A∗(X)→ A∗(X−Y)→ 0.

Proof. Taken from [5]. Let Zk, in analogy with Ak, be the dimension-graded free abelian group of cycles
before rational equivalence. Since any subvariety V of X − Y extends to its closure in X, we obtain the
exact sequence ZkY → ZkX → Zk(X − Y) → 0 on free abelian groups of cycles before taking rational
equivalence. Rational functions on subvarieties of X − Y are uniquely identified with rational varieties on
the closure of the subvariety, so rational equivalence is also preserved on each part of the grading. Hence
we can pass to AkY → AkX → Ak(X−Y)→ 0. �

24It is in fact possible to approach the nice interaction of exterior powers with Chern classes as a central part of the theory,
giving the K-theory a λ-ring structure, though this is more abstract than necessary here. See [8] for such a treatment, and [6] for a
highly abstracted account of “Riemann-Roch functors” in general using this approach.
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3.2. Exterior products. Again in analogy with cohomology, there are Künneth-type exterior products on
K-theory and algebraic cycles. In fact, this is a common way to define the intersection product on the Chow
ring in more general settings, in analogy with the cup product in cohomology.

Theorem 3.3. Let X and Y be varieties.

a) There is a map of rings
K(X)⊗ K(Y)→ K(X×Y),

If π1 : X×Y → X and π2 : X×Y → Y are the projection maps, this map is given by α⊗ β→ π∗1 (α) · π∗2 (β).

b) Denote the exterior product from above as �. Let f : X′ → X and g : Y′ → Y be proper morphisms, so that we
have proper f × g : X′ ×Y′ → X×Y. Then

( f × g)∗(α � β) = f∗(α)� g∗(β)

c) If Y = Pn
k , the map is surjective.

Proof. a) Since π∗1 , π∗2 are linear, the map given by (α, β) → π∗1 (α)π
∗
2 (β) is bilinear, so it factors through

K(X)⊗ K(Y). We do not have to make any reference to coherent sheaves and are already working at the
level of K-elements, so this is a group homomorphism. The ring structure is a formal verification.

b) We can factor the morphism as ( f × idY) ◦ (idX × g), and prove it separately for the two. Just working
with the former by symmetry, let α be represented by coherent sheaf F and β by locally free G - so that we
can take the product in K-theory to just be tensor product on both sides. Then we want

( f × idY)∗(π
∗
1 (F )⊗ π∗2 (G)) = π∗1 ( f∗F )⊗ π∗2 (G)

for all i. Indeed, over a basic open set of the form U × V, where U ⊂ X′, V ⊂ Y, the section looks like
F ( f−1(U)) ⊗ G(V) on both sides. (In general the sections of the tensor sheaf are not the tensors of the
sections, but in this case the section-wise tensor must already be a sheaf, by checking that we can glue basic
open sets.)

The same result holds for pullbacks rather than pushforwards, but we do not need it.

c) This is by far the most difficult portion. We follow closely the proof in [3].

Before tackling the main statement, we prove a lemma:

Lemma 3.4. If X is a variety K(X×An
k ) = K(X).25

Proof. It is clear we need only show it for n = 1 by induction.

If π : X ×A1
k → X, we claim that π∗ gives an isomorphism K(X) → K(X ×A1

k). To prove injectivity, let i
be the inclusion of X as the zero section in X×A1

k . Then πi is the identity, so (πi)∗ = i∗π∗ is as well.

To prove surjectivity, let Y be a closed subvariety of X. Then the following diagram is commutative, by
theorem 3.1:

K(Y) K(X) K(X−Y) 0

K(Y×A1
k) K(X×A1

k) K((X−Y)×A1
k) 0

Surjectivity of the outer arrows implies surjectivity of the inner arrow by the four lemma. Hence by noe-
therian induction, we can excise any closed subvariety from X; thus, we may assume it is irreducible,
nonsingular, and affine.

One further result is necessary: the structure sheaves of irreducible closed subvarieties (identified with
their pushforwards by inclusion) generates K-theory in this situation. This, too proceeds by noetherian
induction: suppose we have a coherent sheaf F on a variety X. If F is torsion under the action of OX , it is
supported on a closed subvariety, so it follows by the hypothesis. Otherwise, by definition of coherence, its

25Note that when X is a point, this is a generalization of the fact that every finitely generated projective module over a polyno-
mial algebra is stably free, a weaker version of the Quillen-Suslin theorem.
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presentation gives it as isomorphic to some power of the total structure sheaf, modulo some sheaf which
must then be torsion.26

Finally, we conclude the lemma: it suffices to prove that for every subvariety V ⊂ X ×A1
k , OV (which we

identify as a coherent sheaf on the full variety by abuse of notation) lies in the image of π∗. If π(V) lies in
a closed subvariety of X, this follows by the inductive hypothesis, so π(V) is dense in X.

What remains is a familiar algebraic exercise from computing spectra of polynomial rings. Let Spec A = X,
so that Spec A[t] = X ×A1

k . If p ⊂ A[t] is the prime ideal corresponding to V, by the above discussion,
we have that p has trivial intersection with coefficient ring A. If K is the fraction field of A, then the
localization of p in K[t] is of course a PID generated by, say, irreducible p(t). Then OV = A[t]/p, and say
F = A[t]/(p(t)), which is clearly zero in K-theory. (p(t)) and p agree after localization away from a closed
subvariety, hence OV and F are the same in K-theory up to a sheaf supported on that same subvariety, so
we are done by the inductive hypothesis. �

Having proved the lemma, We may proceed with the proof of theorem 3.3(c). Once again we have the
commutative diagram

K(X)⊗ K(Pn
r ) K(X)⊗ K(H) K(X)⊗ K(Pn

r − H) 0

K(X×Pn
r ) K(X× H) K(X× (Pn

r − H)) 0

where H is a hyperplane. The result of removing a hyperplane is affine space, so the third arrow is an
isomorphism. Thus once again this follows from the four lemma and induction. Notice this same proof
goes through for Y any variety with an affine stratification. �

Theorem 3.5. Let X and Y be varieties. Then there is a map of rings

A∗(X)⊗ A∗(Y)→ A∗(X×Y),

where the tensor product is considering the Chow groups as Z-modules in the obvious way. At the level of cycles, this
is given by the map [V]⊗ [W] 7→ [V ×W].

b) Denote the exterior product from above as �. Let f : X′ → X and g : Y′ → Y be proper morphisms, so that we
have proper f × g : X′ ×Y′ → X×Y. Then

( f × g)∗(α � β) = f∗(α)� g∗(β)

Proof. a) Taken from [5]. We have such a map on the level of Z∗ before rational equivalence, in the notation
of theorem 3.2. To show that it respects rational equivalence, we use part (b): if α = 0, we may assume by
linearity that β = [W], and by (b) that W = Y. Then α � β is clearly just π∗(α), where π : X×Y → X is the
projection, so we have the group structure. Again, the ring structure is a simple verification.

Note that the exterior product can equivalently be given α � β = π∗1 α · π∗2 β, as in the K-theory case, by a
check of definitions.

b) As in K-theory, it suffices to prove this for g = idY. We may assume α = [V] and β = [W] by linearity, so
that our desired statement reads ( f × idY)∗([V ×W]) = [ f∗(V)×W]. This is formal if one works through
the algebraic definition of pushforward.

Again, the same result holds for pullbacks, but we have no need for it.

Similarly to theorem 3.3, this map is surjective if one of V and W has an affine stratification (and actually
an isomorphism), but this is not important for us. �

We can of course extend the exterior product linearly to the rationalization A(X)⊗Q, which we will denote
A(X, Q) for convenience from this point on.

26This is kind of a weaker version of the structure theorem for finitely generated modules over a PID.
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Theorem 3.6. There is a commutative diagram

K(X)⊗ K(Y) A(X, Q)⊗ A(Y, Q)

K(X×Y) A(X×Y, Q)

ch(−)⊗ch(−)

·�· ·�·
ch(−)

Proof. Formal. �

3.3. Push-pull formulas. While the pushforward clearly cannot respect the ring structure, we would like to
be able to relate it to the tensor product. Simultaneously, we would like a relationship between the functors
f ∗ and f∗, in particular the composition f∗ f ∗. The push-pull formulas (sometimes called the projection
formulas) give an answer to both questions.27

Theorem 3.7. If f : X → Y is a proper morphism of regular varieties, we have the formula

f∗( f ∗(α) · β) = α · f∗(β)

for any α, β ∈ K(X).

Proof. We may assume by linearity that α = [E], β = [F], a pair of vector bundles, so that we can take the
product on the level of sheaves to be tensor product and pullback to be pullback, instead of having to deal
with derived functors. Writing out the definition of pushforward, our formula is

∑(−1)i[Ri f∗( f ∗E⊗ F)] = ∑(−1)i[E⊗ Ri f∗(F)]

Hence it suffices to prove that Ri f∗( f ∗E⊗ F) = E⊗ Ri f∗(F) on the level of vector bundles for all i. Indeed,
this holds if replace F by any coherent sheaf F . Consider the following diagram of categories, where CohSh
is the abelian category of coherent sheaves:

CohSh(X) CohSh(X)

D+(CohSh(Y)) D+(CohSh(Y))

CohSh(Y) CohSh(Y)

−⊗ f∗(E)

f∗(−•) f∗(−•)

H• H•

−⊗E

Here D+ is the bounded-below derived category construction. The top vertical arrows are taking the func-
tor f ∗ of injective resolutions; it is a standard fact of homological algebra that any two such constructions
are homotopy equivalent, so these are well-defined. The middle map consists of applying the exact func-
tor −⊗ E on each degree of the chain complex. The bottom vertical arrows are homology functors. Exact
functors commute with homology, so the bottom square commutes. The statement that the top square com-
mutes, term-wise, is just the statement that f∗(F⊗ f ∗(E)) = f∗(F )⊗ E. The whole square gives us what we
want in general since of course the homology of the f∗ functor applied to an acyclic resolution is precisely
the higher direct functors, so we have reduced to the case i = 0.

When i = 0, we have a natural morphism f ∗( f∗(F )⊗ E) = f ∗( f∗(F ))⊗ f ∗(E) → F ⊗ f ∗(E). Under the
hom-set adjunction between f ∗ and f∗, this induces a morphism ϕ : f∗(F )⊗ E → f∗(F ⊗ f ∗(E)). f∗ and
f ∗ commute with restriction, and tensor product does for the locally free (hence flat) sheaf E, so we may
work locally on the base of E. Further, we can check that our formula can be broken up under Whitney
sums, so we may actually assume E = OY. In this case, the fact that ϕ is an isomorphism is formal, since
the morphism from which it is induced as an adjoint is an isomorphism and hom-set adjunction is a natural
isomorphism. �

27It is incredible in how many different contexts the push-pull formulas arise; seemingly whenever there is an analogue of
Grothendieck’s six operations, and sometimes when there is not. See this MathOverflow thread.
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Theorem 3.8. If f : X → Y is a proper morphism of regular quasiprojective varieties, we have the formula

f∗( f ∗(α) · β) = α · f∗(β)

for any α, β ∈ A(X).

Proof. Adapted from Stacks Project 42.22.

We may assume α = [V] and β = [W] for closed irreducible V, W by linearity. If the relative dimension over
the generic fiber of f (W) is positive, then the right hand side is zero. But since the relative dimension over
the generic fiber is a lower bound on the relative dimension, this means the left hand side is zero too, so we
are done.

Hence we may assume f is generically finite on W. Then we can compute that over each irreducible com-
ponent of W ∩ f−1(V), f is generically finite as well. If p is a generic point of one of these irreducible
components, then it is a classical fact that f |V is quasi-finite on an open set surrounding p, hence finite since
it is proper.

Applying our projection formula for K-theory (which holds for general coherent sheaves, recall, by the
K/G-theory isomorphism) to the coherent sheaves OV and OW gives us the formula

∑(−1)iRi f∗
(
∑(−1)j[Torj(OV , f ∗OW)]

)
= ∑(−1)i

[
Tori

(
∑(−1)jRj f∗(OV),OW

)]
Here we assume f is flat, so we don’t have to write out alternating derived functors for the pullback. But
f |V is finite in a neighborhood of p, so Ri f∗(F ) = 0 for i > 0 in such a neighborhood for F coherent
supported on V. Hence in a neighborhood of the generic point p,

∑(−1)j[ f∗Torj(OV , f ∗OW)] = ∑(−1)i[Tori( f∗(OV),OW)]

But this precisely says, by Serre’s formula for computing multiplicities through lengths of modules, that the
component occurs with equal multiplicity on both sides of the projection formula for cycles. This concludes
the flat case.

Finally, in the case where the morphism is non-flat, see Stacks Project 42.27 for how our result implies the
general case. It is is the less difficult part of this result, but we omit the discussion here because of the space
required to introduce new technology.28�

If we write out the formula for Grothendieck-Riemann-Roch,

f∗(ch(F ) · td(X)) = ch( f∗(F )) · td(Y),

notice that if, in the complex case, the map f is a submersion, we have the exact sequence in tangent
bundles:

0→ TX/Y → TX → f ∗ TY → 0

where TX/Y is the virtual relative tangent bundle of the submersion, we can rewrite GRR using the push-
pull formula as:

ch( f∗F ) = f∗(ch(F ) · td(TX/Y)).

This gives some intuition for its relation to our discussion of the Riemann-Roch formulas earlier: here is a
formula which on one side computes some invariant in the Chow ring via an alternating sum of derived
functors in K-theory, which is like a more refined version of sheaf cohomology. On the other side is a genus.

28There is a simple geometric proof for all morphisms in the quasiprojective case. By Chow’s moving lemma, all intersections
are generically transverse on cycle classes which are represented by closed varieties, in which case this is just the set-theoretic push-
pull formula f ( f−1(W) ∩V) = W ∩ f (V) for α = [W] and β = [V]. See [4] theorem 5.8. Such geometric ideas can be extended to the
full case proven here by Fulton’s treatment using refined intersection products, as we briefly mentioned earlier. See [5] section 8.3
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4. MAIN PROOF

Our main proof follows [5] closely. In particular, we elect for Fulton’s treatment of the closed immersion
case using deformation to the normal cone rather than Borel/Serre’s and SGA’s inclusion of a divisor and
blow-ups (though the two are essentially equivalent) due to its more geometric nature and concision.

The assumption of quasiprojectivity is necessary to harness the power of the relative point of view, but If X
is not quasiprojective, then given α ∈ K(X), there exists a quasiprojective variety X′ and proper g : X′ → X,
and an element α′ ∈ K(X′) with g∗(α′) = α - a Chow envelope. See [5] section 18.3 for a reference; the
development of the theory in that chapter is not difficult, but omitted here for space reasons.

If the ground field is characteristic zero, we can take X′ regular by Hironaka’s resolution of singularities.
Since the version of the theorem in which the first variety is quasiprojective applies to g and f ◦ g, the full
result follows formally as a result of the natural transformation/relative phrasing. Unfortunately, arbitrary
resolution of singularities is an open problem, so we only have the quasiprojective case in positive charac-
teristic using this approach. At this point, we must admit a bit of a fib: we cannot actually prove this case;
this requires the treatment of singular GRR given by Fulton in chapter 18, using local Chern characters. We
hence only logically have the quasiprojective case in positive characteristic here, since this is the furhest
extent our (relatively) straightforward geometric proof goes.

In the case where X is quasiprojective, it is classical that a proper morphism f : X → Y can be factored into
a closed immersion g : X → Pn

Y and a projection π : Pn
Y → Y. Again, the relative point of view tells us that

from GRR on these two separate cases, the full result follows formally.

4.1. A projection. The projection π : Pn
Y → Y can be factored as (p× id) : Pn

k × Y → Spec k× Y. We may
then once again take advantage of the nice formal properties of the relative formulation of GRR to split the
proof into the first and second terms as follows.

Notice that td(OX×Y) = td(OX)td(OY), so the Chern character maps in theorem 3.6 can in fact be aug-
mented by the Todd class. More precisely, if we let τX(−) = ch(−) · td(X) (recalling our discussion of
genera), so that the statement of GRR becomes f∗(τX(F )) = τY( f∗(F )), we have commutativity of the top
square of

K(Pn
k )⊗ K(Y) A(Pn

k , Q)⊗ A(Y, Q)

K(Pn
k ×Y) A(Pn

k ×Y, Q)

K(Spec k×Y) A(Spec k×Y, Q)

τPn
k
⊗τY

·�· ·�·
τPn

k×Y

(p×id)∗ (p×id)∗
τSpec k×Y

where we of course substituted in the particular varieties we are working with, and adjoined the desired
GRR diagram on the bottom. By theorem 3.4, the left vertical arrow is a surjection. Thus to prove that
the bottom square is commutative, our desired statement, it suffices to prove that the outer rectangle is
commutative.

Writing out what this entails on an element [F ] ⊗ [G], we find our desired equation can be written as
ch(p∗(F )) · ch(id∗(G)) · td(Spec k×Y) = p∗(ch(F ) · td(Y)) · id∗(ch(G) · td(Pn

k )), or equivalently

[ch(p∗(F ))td(Spec k)] · [ch(id∗(G))td(Y)] = [p∗(ch(F ) · td(Y))] · [id∗(ch(G) · td(Pn
k ))].

Hence we see that it suffices to prove GRR separately for the factors p and id.

The statement is easily seen to be vacuous for id. For p : Pn
k → Spec k, it is Hirzebruch-Riemann-Roch on

projective space:

χ(F ) =
∫

Pn
k

ch(F )td(Pn
k ).

By additivity on both sides in short exact sequences, it suffices to prove the statement for sheaves generating
the K-theory of projective space; by Hilbert’s syzygy theorem, we can thus take F = O(k), the k-twisted
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structure sheaf. The left side we can replace with the known Hilbert polynomial, and right side with the
explicit calculation of Chern character and Todd class, as we did at the end of section 2.4. Then what is left
to prove is (

n + k
k

)
= [xn]ekx

(
x

1− e−x

)n+1

for all integers n and k. Indeed we see that the right hand side is equal to the residue [x−1] ekx

(1−e−x)n+1 . Under

the change of variables y = e−x, the residue [x−1] at 0 becomes the constant term [y0]. Hence, reframing in
terms of residues, we need to calculate

[y−1]
1

yk+1(1− y)n+1 =
1

2πi

∫
C

1
yk+1(1− y)n+1 dy

for a small counterclockwise-oriented loop C around the origin. Using the Cauchy integral formula with
f (y) = 1

(1−y)n+1 , this is equal to 1
k! f (k)(0). But the Taylor series of f is just

(1 + y + y2 + . . .)n+1 = 1 +
n + 1

1!
x +

(n + 1)(n + 2)
2!

x2 +
(n + 1)(n + 2)(n + 3)

3!
x3 + . . .

from which the value of f (k)(0) is (n+k)!
n! , so that our value is indeed (n+k)!

n!k! = (n+k
k ).

4.2. A closed immersion. Finally, to show GRR for g : X → Pn
Y, we show it for a general closed immersion

f : X → Y.

4.2.1. Immersion in the normal cone. First, we show the result for a particularly nice case. Recall the relation
r

∑
i=0

(−1)ich(∧iE∧) = cd(E) · td(E)−1

where cd is the top Chern class. The left-hand side is reminiscient of a resolution by a Koszul complex, a
standard piece of algebraic machinery which is often used to resolve the structure sheaf of the vanishing of
a section of a vector bundle by exterior powers of the vector bundle.29

If we could obtain the image of the embedding as the zero locus of a section, we could use a Koszul complex
and the above equation to resolve our problem. This naturally leads us to the common construction of
embedding of X as the zero section in its normal bundle N, which is equivalently the normal cone.30 To
be more precise, we can take N to be any vector bundle on X, since it is apparent that the normal bundle
of a zero section embedding is just the bundle itself. Actually, in order to facillitate the construction of the
necessary section, we will embed X in the projectivization P(N⊕ 1). more precisely, f : X → Y = P(N⊕ 1)
embeds X in N, and then identifies N in the familiar way with an open set of P(N ⊕ 1).

The reason for this is that the projectivization is equipped with the tautological (or universal) line bundle,
which enables us to construct our desired section. Indeed, there is a total line bundle on P(N⊕ 1) given by
the pullback of N ⊕ 1 itself; i.e. if π : P(N ⊕ 1)→ X is the projection, π∗(N ⊕ 1), in which the tautological
bundle can be naturally identified as the subbundle whose fiber over a point q is identified as the line
corresponding to q in the copy of N ⊕ 1 over q. The quotient of this total bundle by the tautological bundle
is a vector bundle of the same dimension as N called the universal quotient bundle, which we will denote
by Q.

The projection of the trivial factor onto Q induces a morphism s : P(N ⊕ 1) → Q given by sending a point
q to, e.g. (0, 1) ∈ π∗Nq ⊕ 1 in the fiber over it, and then projecting it by the quotient map on vector bundles.
Hence s is an (algebraic) section, which vanishes precisely on X: the trivial factor vanishes in projection
over a point q precisely when the line corresponding to q is the trivial factor in N ⊕ 1, i.e. when q ∈ X.

29Unfortunately, I am not aware at this time of a good geometric picture for this, and am doubtful whether one can be given,
as Koszul complexes exist as algebraic constructions in much greater generality. Stacks Project 17.20 is a reference. We will make use
of such complexes without comment.

30We mention this only for consistency of nomenclature; it is not particularly important besides the fact that the two are
naturally isomorphic on a regular variety. The cone is constructed a different way algebraically, but in nice cases there are natural
isomorphisms; see [5] chapter 4 for the cone construction.
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Then s determines the Koszul complex

0→ ΛdQ∧ → . . .→ Λ2Q∧ → Q∧ → OY → f∗(OX)→ 0

where d is the dimension of Q (or N). Tensoring with the vector bundle p∗E, we obtain

0→ ΛdQ∧ ⊗ p∗(E)→ . . .→ Λ2Q∧ ⊗ p∗(E)→ Q∧ ⊗ p∗(E)→ p∗(E)→ f∗(E)→ 0

where we use the fact that f∗OX ⊗ π∗E = f∗E, which is clear by checking sections. Hence we have a
resolution of f∗(E), giving us

ch( f∗(E)) =
d

∑
i=0

(−1)ich(λiQ∧) · ch(p∗(E)).

But we find on the right hand side exactly what we were hoping to work with, and hence

ch( f∗(E)) = cd(Q) · td(Q)−1 · ch(p∗(E)) = f∗( f ∗(td(Q)−1) · f ∗(ch(p∗(E)))) = f∗(td(N)−1 · ch(E)).

by the push-pull formula and functoriality. From the exact sequence

0→ TX → f ∗TY → N → 0

we can rewrite this as
ch( f∗(E)) · td(Y) = f∗(ch(E) · td(X))

as desired.

4.2.2. Deformation to the normal cone. We conclude by reducing the case in the previous section, via a con-
struction called deformation to the normal cone, which, given a closed embedding f : X → Y, allows
one to construct a flat family M of copies of Y over P1

k so that the copy at ∞ becomes an immersion in the
normal cone. We very briefly sketch the construction; consult [5] chapter 5 for details.

We construct M as the blow-up of Y ×P1
k along the closed subvariety X × {∞}. It is clear that away from

the fiber over ∞, the fiber is still just Y, because of the isomorphism on the open set away from the blow-up.
On the fiber over ∞, we are left with the sum of effective Cartier divisors P(N⊕ 1) + Ỹ, since blow-up is the
universal way to turn a closed subscheme into a Cartier divisor. Here N is the normal cone to X in Y, and Ỹ
is the blowup of Y along X. These two divisors intersect along P(N), which is embedded respectively the
hyperplane at infinity and the exceptional divisor of the blow-up. Notably, Ỹ does not intersect the image
of X.

The map back down onto P1
k is a blow-down and then a projection, hence we indeed have a flat family. We

additionally have the closed immersion X ×P1
k → M still, since the inclusion of the fiber at infinity is just

the embedding f ′ of X in P(N ⊕ 1) in the manner with which we are already familiar.

We apply this now to a general closed immersion f : X → Y to deduce the final case of GRR. We have the
following commutative diagram, reproduced from [5]:

X P(N ⊕ 1) + Ỹ {∞}

X×P1
k M P1

k

X Y {0}

f

i∞ j∞

F

f
i0 j0

where notation is extended from our discussion of the deformation to the normal cone. Let k and l be the
restrictions of the inclusion morphism j∞ to the divisors P(N ⊕ 1) and Ỹ respectively.

As usual, by linearity, we may take a vector bundle E as our representative of the K-theory of X. Let Ẽ be
its obvious pullback to all of X×P1

k . We can find a resolution G• of F∗(Ẽ) on M.

The pullback of a flat family to its fibers is exact almost tautologically, so j∗0 G• and j∗∞G• are resolutions
of j∗0 (F∗(Ẽ)) and j∗∞(F∗(Ẽ)) respectively. But j∗0 (F∗(Ẽ)) = f∗(E) by diagram chasing (not just functoriality,
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but the fact that pullbacks of closed immersions are just restrictions), so actually j∗0 G• resolves f∗(E) on Y.
Analagously, j∗∞G• resolves f ∗(E) on the fiber at infinity. But since f (X) does not intersect Ỹ, we can say
that k∗G• is already a resolution of the sheaf, while l∗G• is acyclic, since the pullback of the sheaf supported
away from it is just zero.

With all of this set up, we can now compute. Write ch(F•) = ∑(−1)ich(Fi) on chain complexes as short-
hand.

j0∗(ch( f∗(E))) = j0∗(ch(j∗0 (G
•))) = ch(G•) · j0∗([Y])

by the push-pull formula on cycles; using the rational equivalence of fibers in a flat family and working
with the divisors in the Chow ring, now, we get that this is

= ch(G•) · (k∗([P(N ⊕ 1)]) + l∗([Ỹ]) = k∗(ch( f ∗(E)))

where the last equality follows by applying push-pull again and observations about k∗ and l∗. But we
already have calculated ch( f (E)) since it is an immersion into the normal cone; thus combining the results,
we obtain

j0∗(ch( f∗(E))) = k∗( f ∗(td(N)−1 · ch(E)))

in the rational Chow ring of M. Now if we push forward both sides by the blow-down from M to Y ×P1
k

and then the projection to Y, by functoriality of push-forward in the diagram above this reduces to

ch( f∗(E)) = f∗(td(N)−1 · ch(E))

which reduces as before to
ch( f∗(E)) · td(Y) = f∗(ch(E) · td(X))

which is the result. �

5. CONCLUDING REMARKS

The theorem we have proven is a very general and powerful way of computing with Chern classes and
pushforwards of bundles (among other applications) on varieties. However, it should be noted that in
most practical applications, Grothendieck-Riemann-Roch is not the best way to compute, as the morass of
definitions and series to sort through often makes such a task arduous and messy. For example, while the
27 lines on a cubic problem mentioned earlier can be computed using GRR (it is the example in [4]), it is
almost always done using less general, but much cleaner, techniques or “tricks.”

While we have endeavored to make our foundations fairly general in this paper, we clearly have not stated
GRR in the greatest generality possible. Some trade-offs had to be made; for example; the ground field can
be made arbitrary, but this necessitates separability assumptions in some results (e.g. any theory developed
using a moving lemma), and substitution of smoothness assumptions for regularity assumptions almost
everywhere.31

In other instances, we simply did not adopt the more general viewpoint for the sake of remaining close
to geometric roots while not spending too much time developing techniques and theories. For example,
we did not actually have the power to prove the non-quasiprojective case in positive characteristic. For
this, we need a more general version of GRR for singular varieties, using a construction called the local
Chern character. The treatment in [5] chapter 18 extends the results to arbitrary algebraic schemes. Here an
algebraic scheme is locally of finite type and separated over a field.

The most general setting known in which the form of GRR stated in this paper holds is mentioned only
briefly in chapter 20 of [5]. In the category of schemes over an arbitrary regular scheme, one can define still
a relative intersection theory, for locally finite type and separated schemes over it.32 Restricting to smooth
schemes, we again have GRR. The singular formulation with a local Chern character extends as well.

31Indeed, we were able to “get away” with regularity in most cases because a regular scheme over a perfect field (hence any
algebraically closed field) is smooth.

32If the base scheme is one-dimensional, we have even an exterior product on the Chow groups, and hence the Chow ring
structure.
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In particular, in the case where the base is affine of dimension one and hence a Dedekind domain, we have a
number theoretic analogue of GRR (and indeed most of intersection theory, by the previous footnote). This
may be extended to the infinite places (in the number field case) by the hermitian techniques of Arakelov
geometry to obtain what is known as arithmetic Grothendieck-Riemann-Roch.[11] gives an accessible
account of the Arakelov version.

There are, of course, countless variants of GRR (or at least related Riemann-Roch type formulas) with
statements which appear somewhat different. For example, if one wishes to avoid rationalizing, there
is Riemann-Roch “without denominators,” treated in section 15.3 of [5]. Equivariant and bivariant formu-
lations also exist; the latter are described in chapter 17 of the same text.

Finally, moving to the analytic world, in [2] Atiyah and Hirzebruch formulated GRR and proved it for a
closed immersion for general compact complex manifolds. Indeed, they also showed a close relationship,
as is the norm, between the algebraic and analytic worlds, including that the morphism from algebraic
K-theory to topological K-theory commutes with pushforward. Hirzebruch-Riemann-Roch was already
known, as, e.g., a consequence of the powerful Atiyah-Singer index formula. The general complex analytic
case was settled by Nigel O’Brian, Domingo Toledo, and Yue Lin Tong in 1985; see [10]. Less perfect
analogues for smooth manifolds without complex structure but a spin-like structure were developed by
Atiyah and Hirzebruch in [1]

Even Atiyah-Singer can be seen as a Riemann-Roch type formula, as a vast generalization of the analytic
version of Hirzebruch-Riemann-Roch. In fact, SGA 6 includes some musings by Grothendieck on the pos-
sibility of a relative version of Atiyah-Singer which would also encapsulate the analytic GRR, but he con-
cluded unhappily: “Sadly, at present, even a heuristic statement which encompasses these two theorems is
lacking.”33
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[3] Borel, Armand and Serre, Jean-Paul. “Le théorème de Riemann-Roch.” Bulletin de la S.M.F. 86 (1954): 97–136.
[4] Eisenbud, David and Harris, Joe. 3264 and All That. Unpublished. http://isites.harvard.edu/fs/docs/icb.topic720403.

files/book.pdf

[5] Fulton, William. Intersection Theory. Berlin: Springer-Verlag, 1984.
[6] Fulton, William and Lang, Serge. Riemann-Roch Algebra. Berlin: Springer, 1985.
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