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Abstract. Ergodic theory studies the long-term averaging properties of measure-

preserving dynamical systems. In this paper, we state and present a proof of

the ergodic theorem due to George Birkhoff, who observed the asymptotic
equivalence of the time-average and space-average of a point x in a finite

measure space. Then, we examine a number of applications of this theorem

in number-theoretic problems, including a study of normal numbers and of
Lüroth series transformations.
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3. Lüroth Series Transformations 8
3.1. Ergodic Properties of Lüroth transformation T 10
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A discrete dynamical system consists of a space X and a transformation T
which maps the space onto itself i.e. T : X → X. We assume T is a measurable
function. When studying discrete systems, we consider how a point in the space
moves over discrete time intervals. We can think of the X as the space of all
possible states of some system, where T specifies how the state changes changes
over a specific time interval. For some y ∈ X, we define the orbit of y under T
to be the sequence y, T (y), T 2(y), · · · , Tn(y), · · · . If T is one-to-one and onto, then
we say T is an invertible transformation.

Ergodic theory studies a particular subset of these dynamical systems–those
which are measure-preserving. In the paper, we define and present a number of
characteristics pertaining to these measure-preserving dynamical systems, such as
randomness and recurrence. We assume a background in basic notions of measure
theory and Lebesgue integration. The relevant background information can be
found in most real analysis textbooks, such as Real and Complex Analysis by Walter
Rudin. The reference we derive the conventions and notations in the subsequent
section from is An Invitation to Ergodic Theory by C.E. Silva.
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1. Recurrence and Ergodicity in Dynamical Systems

Suppose we have a nonempty set X and a σ-algebra B in X. A measure space
is defined to be a triple (X,B, µ) where µ is a measure on B. We say a set A is a
measurable set if A ⊂ X and A ∈ B. A probability space is a measure space
(X,B, µ) such that µ(X) = 1. We say a measure space is a finite measure space
if µ(X) < ∞ and is σ-finite if there exists a sequence of measurable sets An of
finite measure such that X = ∪∞n=1An.

Definition 1.1. Let (X,B, µ) be a probability space. We say the transformation
T : X → X is measure-preserving (with respect to µ) and that µ is T -invariant
if µ(T−1(A)) = µ(A) for all A ∈ B.

If T is measure-preserving, then we refer to the dynamical system (X,B, µ, T )
as a measure-preserving dynamical system.

We take a measurable set A of positive measure in B and consider the orbit of
points in A. Specifically, we ask whether the points in A will return to the set A
and if so, how often will they return. We say a measure-preserving transformation
T defined on a measure space (X,B, µ) is recurrent if for every measurable set
A of positive measure, there is a null set N ⊂ A such that for all x ∈ A \ N ,
there exists an integer n = n(x) > 0 with Tn(x) ∈ A. In order words, if, for every
measurable set A of positive measure, every point in that set, except points in a
set of measure zero, eventually returns to A under T , then T is recurrent, and the
system is a recurrent dynamical system.

The following theorem is a theorem due to Poincaré who proved a property
relating to finite measure spaces. The statement and full proof of this theorem can
be found in [5].

Theorem 1.2 (Poincaré Recurrence Theorem). Let (X,B, µ) be a finite measure
space. If T : X → X is a measure-preserving transformation, then T is recurrent.

We define a point which is not recurrent to be a wandering point. Formally,
a wandering point is a point in A such that ∀n ∈ N, Tn(x) 6∈ A. By Poincaré
recurrence, for a finite measure space with a measure-preserving transformation T ,
the wandering set (i.e. the set of all wandering points in this system) is a set of
measure zero.

Many of the properties we study that hold for recurrent and ergodic systems
hold outside of a set of measure zero; we characterize these properties as holding
almost everywhere. To generalize this notion, we define an invariant set. We say
a set A is positively invariant if A ⊂ T−1(A) and strictly invariant or simply
T -invariant if A = T−1(A). Studying ergodic properties on T -invariant sets allows
us to disregard sets of measure zero.

Recurrent transformations on a finite measure space are said to be ergodic if
they satisfy the following property.

Definition 1.3. A measure-preserving transformation T is ergodic if whenever A
is a strictly T -invariant measurable set, then either µ(A) = 0 or µ(Ac) = 0.

The following lemma relates our notions of recurrence and ergodicity, and intro-
duces some new properties of such systems.

Lemma 1.4. Let (X,B, µ) be a σ-finite measure space and let T be a measure-
preserving transformation. Then the following are equivalent:
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(1) T is recurrent and ergodic.
(2) For every measurable set A of positive measure, µ(X \⋃∞n=1 T

−n(A)) = 0.
(3) For every measurable set A of positive measure and for a.e. x ∈ X there

exists an integer n > 0 such that Tn(x) ∈ A.
(4) If A and B are sets of positive measure, then there exists an integer n > 0

such that T−n(A) ∩B 6= ∅.
(5) If A and B are sets of positive measure, then there exists an integer n > 0

such that µ(T−n(A) ∩B) > 0.

1.1. Approximation with Sufficient Semi-rings. While we assume a back-
ground in fundamental notions of measure theory, we develop here some techniques
of approximation with semi-ring structures.

We define a semi-ring R to be a collection of subsets of a nonempty space X
such that

(1) R is nonempty.
(2) if A,B,∈ R, then A ∩B ∈ R, and
(3) if A,B ∈ R, then

A \B =

n⊔

j=1

Ej

where Ej ∈ R are disjoint.

We say a semi-ring R is a sufficient semi-ring if it satisfies that for every
measurable set A in the σ-algebra,

µ(A) = inf




∞∑

j=1

µ(Ij) : A ⊂
∞⋃

j=1

Ij and Ij ∈ R for j ≥ 1





There are several useful properties for studying these structures. In particular,
we have that if a measurable set can be written as a countable union of elements
of a semi-ring C, then it can be written as a countable union of disjoint elements of
the semi-ring.1 We also have the property that every finite measurable set can be
approximated, for every ε > 0, by a finite union of disjoint elements of a sufficient
semi-ring where the symmetric difference between the finite measurable set and the
sufficient semi-ring is less than ε. In this examination of ergodic dynamical systems,
particularly relevant sufficient semi-rings are the intervals and the dyadic intervals,
or the set of all intervals of the form [ k2n ,

k+1
2n ) where n > 0 and k = 0, 1, · · · , 2n−1.

Lemma 1.5. Let (X,B, µ) be a measure space with a sufficient semi-ring C. Let
A be a measurable set, µ(A) < ∞, and let ε > 0. Then there exists a set H∗ that
is a finite union of disjoint elements of C such that µ(A∆H∗2) < ε.3

This lemma implies that every element of a sufficient semi-ring is a measurable
set. When proving properties of measure-preserving systems, it is sufficient to prove
them only for the measurable sets which are elements of a sufficient semi-ring in
order to verify the properties for all measurable sets in a σ-algebra, i.e.

1This statement is Proposition 2.7.1 in [5].
2We use ∆ to denote symmetric difference.
3The lemma is a statement of the first of Littlewood’s Three Principles of Real Analysis. Its

statement and full proof can be found in [5].
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Theorem 1.6. Let (X,B, µ) be a σ-finite measure space with a sufficient semi-ring
C. If for all I ∈ C,

(1) T−1(I) is a measurable set, and
(2) µ(T−1(I)) = µ(I)

then T is a measure-preserving transformation.

2. The Birkhoff Ergodic Theorem

The Ergodic Theorem, due to Birkhoff in 1931, relates the time-average of a
transformation and the measure of the space. By time-average, we refer to the limit
of the average number of times the elements of the sequence x, T (x), T 2(x), · · · are
in A, or the average number of times x visits A in its orbit. This theorem states
that for an ergodic system, for any measurable set A and almost every x in the full
space X, the limit of the average recurrence frequency of x in A is asymptotically
equal to the measure of A.

The following proof of the theorem follows [2] and [4]. In particular, the combina-
torial trick used to prove the Maximal Ergodic Theorem follows the one presented
in [2] due to Riesz.

Definition 2.1. Suppose we have a finite sequence of real numbers a1, a2, . . . , an.
We say the term ak is an m-leader if there exists a positive integer p where 1 ≤
p ≤ m such that ak + · · ·+ ak+p−1 ≥ 0.

Lemma 2.2. The sum of all m-leaders is nonnegative.

Proof. Let ak be the first m-leader of the finite sequence of reals a1, . . . , an and let
p be the smallest integer p ≤ m for which ak + · · ·+ ak+p−1 ≥ 0.

It follows that every ah such that k ≤ h ≤ k+p−1 must be an m-leader as well.
If not, then ah + · · ·+ ak+p−1 < 0⇒ ak + · · ·+ ah−1 > 0, which contradicts that p
is the smallest integer p ≤ m for which ak + ak+1 + · · ·+ ak+p−1 ≥ 0.

Since each ah where k ≤ h ≤ k + p − 1 is an m-leader, the sum of these terms
is the sum ak + · · ·+ ak+p−1, which by assumption, is nonnegative. We repeat this
process inductively for the rest of the terms of the sequence ak+p, . . . , an and the
result follows. �

We will denote

fn(x) =

n−1∑

k=0

f(T k(x))

Lemma 2.3 (Maximal Ergodic Theorem). Suppose we have a probability space
(X,B, µ) and a measure-preserving transformation T : X → X. Let f : X → R be
an integrable function and define

G(f) = {x ∈ X : fn(x) ≥ 0 for some n > 0}.
Then, ∫

G(f)

f ≥ 0.

Proof. Let m be a positive integer. We define Gm as follows:

Gm = {x ∈ X : fk(x) ≥ 0 for some k, 1 ≤ k ≤ m}.
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Let n be an arbitrary positive integer. Consider for each x, the m-leaders of the
sequence f(x), f(T (x)), . . . , f(Tn+m−1(x)). We define sm(x) to be the sum of these
m-leaders.

We define Bk to be the set of x ∈ X for which f(T k(x)) is an m-leader of the
sequence f(x), f(T (x)), . . . , f(Tn+m−1(x)). From our definitions, it is clear sm is
measurable and integrable.

By Lemma 2.2, we see that sm ≥ 0, and so,

0 ≤
∫

Bk

smdµ =

n+m−1∑

k=0

∫

Bk

f ◦ T kdµ

We notice that if k = 1, 2, · · · , n− 1, x ∈ Bk ⇐⇒ T (x) ∈ Bk−1, and equivalently,
Bk = T−1(Bk−1) ⇐⇒ Bk = T−k(B0). By a change of variables,

∫

Bk

f ◦ T kdµ =

∫

T−k(B0)

f ◦ T kdµ =

∫

B0

fdµ.

As Gm = B0 and T is measure-preserving, it follows

0 ≤
n+m−1∑

k=0

∫

Bk

f ◦ T kdµ =

n−1∑

k=0

∫

B0

fdµ+

n+m−1∑

k=n

∫

Bk

f ◦ T kdµ

≤ n
∫

Gm

fdµ+m

∫
|f |dµ

If we divide through by n and let n→∞, we are left with
∫

Gm

fdµ ≥ 0.

Consider fχGn . We find that as Gm ⊂ Gm+1, this is an increasing sequence. As
G(f) =

⋃
m≥1Gm, we observe limn→∞ fχGn = fχG(f). Since |fχGn | ≤ |f |, by the

Dominated Convergence Theorem, we have

0 ≤ lim
n→∞

∫
fχGndµ =

∫

G(f)

fdµ

�

Theorem 2.4 (Birkhoff Ergodic Theorem). Suppose we have a probability space
(X,B, µ) and a measure-preserving transformation T : X → X. If f : X → R is an
integrable function, then

(1) limn→∞ 1
n

∑n−1
k=0 f(T k(x)) exists for almost all x ∈ X. Denote this limit as

f̃(x).

(2) f̃(Tx) = f̃(x) a.e.
(3) For any measurable set A that is T -invariant,

∫

A

fdµ =

∫

A

f̃dµ.

If T is ergodic, then

lim
n→∞

1

n

n−1∑

k=0

f(T k(x)) =

∫
fdµ a.e.
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Proof. (1) We denote

f∗(x) = lim inf
n→∞

1

n

n−1∑

k=0

f(T k(x))

and

f∗(x) = lim sup
n→∞

1

n

n−1∑

k=0

f(T k(x)).

For α, β ∈ R, we denote

Eα,β = {x ∈ X : f∗(x) < α < β < f∗(x)}.
To prove the existence of the limit a.e., we want to show that for almost
every x ∈ X, f∗(x) = f∗(x). To do so, we will show that Eα,β , i.e. the set
of points where f∗(x) = f∗(x) differ, is a set of measure zero.

First, we want to show that our set Eα,β is T -invariant. We claim f∗ and
f∗ are T -invariant. We take lim inf as n approaches infinity of the following
expression

1

n
fn(T (x)) =

1

n

n−1∑

k=0

f(T k(T (x))) =
n+ 1

n
fn+1(x)− 1

n
f(x)

and find

f∗(T (x)) = lim inf
n→∞

n+ 1

n
fn+1(x)− lim inf

n→∞
1

n
f(x) = f∗(x)

which proves f∗ ◦ T = f∗ i.e. f∗ is T -invariant. A similar argument shows
f∗ ◦ T = f∗ i.e. f∗ is T -invariant. Consequently, Eα,β is T -invariant. We
define G(f − β) = {x ∈ X : (f − β)n ≥ 0 for some n > 0}. Next, we
consider the set of all x such that f∗(x) > β. There exists an N ∈ N
such that 1

N

∑N−1
i=0 f(T i(x)) > β ⇒ ∑N−1

i=0 f(T i(x)) − Nβ ≥ 0 exactly if∑N−1
i=0 (f − β)i(x) ≥ 0, so x ∈ G(f − β).
In particular, we find Eα,β ⊂ G(f − β). We apply the Maximal Ergodic

Theorem to T restricted to Eα,β and to f − β, which gives us
∫

Eα,β

(f − β)dµ ≥ 0⇒
∫

Eα,β

fdµ ≥ βµ(Eα,β).

Using that f∗(x) < α =⇒ −f∗(x) > −α, we similarly find Eα,β ⊂
G(α − f). By an application of the Maximal Ergodic Theorem to T re-
stricted to Eα,β and to α− f , it follows

∫

Eα,β

−fdµ ≥ −αµ(Eα,β)⇒
∫

Eα,β

f ≤ αµ(Eα,β).

Then, as α < β by assumption, and

βµ(Eα,β) ≤
∫

Eα,β

f ≤ αµ(Eα,β),

it follows µ(Eα,β) = 0. Hence, as this holds for all rational α, β, f∗ = f∗
a.e.
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(2) Next, we want to show f̃(T (x)) = f̃(x) a.e.

The proof that f̃ is T -invariant comes directly from the definition of the
limit. We find

f̃(T (x)) = lim
n→∞

1

n

n−1∑

k=0

f(T k(x)) = lim
n→∞

1

n

(
n−2∑

k=0

f(T k(T (x)) + f(x)

)

= lim
n→∞

1

n

n−2∑

k=0

f(T k(T (x)) + lim
n→∞

1

n
f(x)

= f̃(x)

(3) Finally, we will show that
∫
A
fdµ =

∫
A
f̃dµ for any measurable set A.

We begin by defining An,k = {x ∈ A : k
2n ≤ f̃(x) < k+1

2n } where n =
0, 1, . . . , and k = 0,±1,±2, . . . . By (2), An,k is a T -invariant set for each
n and k. We observe that for each n, X =

⋃
k An,k.

Fix ε > 0. In (1), we found f̃(x) = f∗(x), as the limit exists, and so,

given ε > 0, it is true that f̃(x) ≥ k
2n ⇒ f∗(x)− k

2n + ε > 0. We apply the

Maximal Ergodic Theorem to T restricted to An,k and to f(x)− k
2n + ε as

we did in (1) and get
∫

An,k

fdµ ≥
(
k

2n
− ε
)
µ(An,k)

We provide a similar argument to handle the right-hand-side inequality
i.e. f̃(x) < k+1

2n . By the existence of the limit, f̃(x) = f∗(x), from which

it follows f̃(x) < k+1
2n ⇒ f∗(x) < k+1

2n ⇒ −f∗(x) > −(k+1
2n ). This gives us

−f∗(x) + (k+1
2n ) > 0 for all x ∈ An,k. As in (1), we find An,k ⊂ G(k+1

2n − f),

and we apply the Maximal Ergodic Theorem to k+1
2n − f and An,k, which

gives us
∫

An,k

−fdµ ≥ −
(
k + 1

2n

)
µ(An,k)

Then, we let ε→ 0, and it follows

k

2n
µ(An,k) ≤

∫

An,k

fdµ ≤ k + 1

2n
µ(An,k).

Our definition of An,k gives us the same inequality expression for f̃ i.e.
k
2nµ(An,k) ≤

∫
An,k

f̃dµ ≤ k+1
2n µ(An,k). Then,

∫

An,k

|f − f̃ |dµ ≤ 1

2n
µ(An,k)

We sum over k and find∫

A

|f − f̃ |dµ ≤ 1

2n
µ(A).

We let n go to infinity, which gives us
∫

A

|f − f̃ |dµ = 0⇒
∫

A

fdµ =

∫

A

f̃dµ.

�
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3. Lüroth Series Transformations

We apply our understanding of ergodic theory to study properties of one par-
ticular class of transformations known as Lüroth series transformations. A Lüroth
series transformation is a transformation on [0, 1) that arises as follows: there is a
partition of [0, 1) into intervals {Jn : n ∈ A}, where A is N or a finite subset of N
such that on each Jn, T is an increasing linear function whose range is an interval
with endpoints 0 and 1.

The classical example of one such transformation is the following map T : [0, 1)→
[0, 1) defined by

T (x) =

{
n(n+ 1)x− n, x ∈ [ 1

n+1 ,
1
n )

0, x = 0.
(3.1)

In this section, we will show that each x ∈ [0, 1) admits a unique, finite or
infinite, Lüroth series expansion for this particular T and illustrate some properties
of the dynamics of such systems with this particular transformation T , including
a property regarding the recurrence of each k ∈ N which results from the Birkhoff
Ergodic Theorem.

A point x ∈ [0, 1) is said to have a finite Lüroth transformation if there is some
k for which T k−1(x) = 0. The set of all points in [0, 1) with finite expansion is a
subset of the rational numbers, and thus has Lebesgue measure zero.

Remark 3.2. In the following sections, we work exclusively with the set of all points
x ∈ [0, 1) such that x has an infinite Lüroth expansion i.e. for all k, T k−1(x) 6= 0.
We define our space X to be the set of these points; we observe µ(X) = 1.

We suppose x 6= 0 and for all k ≥ 1, T k−1(x) 6= 0. We define an = an(x) by

ak(x) = a1(T k−1(x))

where a1(x) = n + 1 if x ∈ [ 1
n+1 ,

1
n ), n ≥ 1. For convenience, we will write a1 in

place of a1(x). We redefine our transformation T with these conventions:

T (x) =

{
a1(a1 − 1)x− (a1 − 1), x 6= 0

0, x = 0.

It follows that

x =
1

a1
+

T (x)

a1(a1 − 1)

and that

T (x) =
1

a1(T (x))
+

T (T (x))

a1(T (x))(a1(T (x))− 1)
.

Given a2(x) = a1(T (x)), we observe

x =
1

a1
+

1

a1(a1 − 1)

(
1

a2
+

T 2(x)

a2(a2 − 1)

)

=
1

a1
+

1

a1(a1 − 1)a2
+

T 2(x)

a1(a1 − 1)a2(a2 − 1)
.

For all k ≥ 1, we proceed inductively and have an infinite series expansion

x =
1

a1
+

1

a1(a1 − 1)a2
+ · · ·+ 1

a1(a1 − 1) · · · an−1(an−1 − 1)an
+ · · ·
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where ak ≥ 2 for each k ≥ 1. We show that the series does indeed converge to x.
If Sk(x) denotes the sum of the first k terms of the series, then

x = Sk(x) +
T k−1(x)

a1(a1 − 1) · · · ak−1(ak−1 − 1)ak
.

Our transformation T is bounded above by 1. We observe also for each k, as ak ≥ 2,

1

ak(ak − 1)
≤ 1

2

Therefore,

|x− Sk(x)| =
∣∣∣∣

T k−1(x)

a1(a1 − 1) · · · ak−1(ak−1 − 1)ak

∣∣∣∣ ≤
1

2k

Taking the limit as k approaches infinity verifies the convergence.
The following proof is due to [6].

Proposition 3.3. The Lüroth expansion for T is unique.

Proof. For convenience, we will denote the Lüroth expansion as an infinite string
of digits d1d2d3 · · · . Suppose we have two different Lüroth expansions under T for
x ∈ [0, 1) i.e. we have two expansions a1a2a3 · · · and b1b2b3 · · · of x such that there
exists at least one N ∈ N where aN 6= bN . Let N ∈ N be the first digit in the
sequence where the two expansions differ.

WLOG, suppose aN < bN . We denote

SN−1 =
1

a1
+

1

a1(a1 − 1)a2
+ · · ·+ 1

a1(a1 − 1) · · · aN−1(aN−1 − 1)

and define the difference δ between the two expansions:

δ = SN−1

((
1

aN
− 1

bN

)
+

(
1

aN (aN − 1)aN+1
− 1

bN (bN − 1)bN+1

)
+ · · ·

)

= SN−1

((
1

aN
− 1

bN

)
+

∞∑

k=1

1

aN (aN − 1) · · · aN+k
−
∞∑

k=1

1

bN (bN − 1) · · · bN+k

)

> SN−1

((
1

aN
− 1

bN

)
−
∞∑

k=1

1

bN (bN − 1) · · · bN+k

)

For each k ≥ 1, as ak ≥ 2, we observe

1

am(am − 1) · · · am+k
≤ 1

2k

It follows

δ > SN−1

(
bN − aN
aNbN

− 1

bN (bN − 1)

∞∑

k=1

1

2k

)
≥ SN−1

(
1

aNbN
− 1

bN (bN − 1)

)
≥ 0

We find that the difference between the two expansions is positive, which contradicts
that both expansions converge to x. �

We can think of this series expansion as an approximation of x by intervals
[ 1
n+1 ,

1
n ). We observe (0, 1) =

⋃
n≥1[ 1

n+1 ,
1
n ). Hence, for all nonzero x ∈ [0, 1), x

will fall in one such interval for some n ≥ 1; we can see x ≥ 1
n+1 . What the Lüroth

transformation T does is it determines how much greater x is than 1
n+1 and returns
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some value T (x) ∈ [0, 1) that indicates the proportion of the interval [ 1
n+1 ,

1
n ) where

that difference T (x) lies. Iterating this T generates the Lüroth expansion for T .
10 Motivation and Examples
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Figure 1.3: The Lüroth Series map T .

Thus1, for any x ∈ (0, 1) such that T k−1x 6= 0, we have

x = 1
a1 + Tx

a1(a1 − 1)
= 1
a1 + 1

a1(a1 − 1)

(
1
a2 + T 2x

a2(a2 − 1)

)

= 1
a1 + 1

a1(a1 − 1)a2
+ T 2x
a1(a1 − 1)a2(a2 − 1)

...

= 1
a1 + · · ·+ 1

a1(a1 − 1) · · · ak−1(ak−1 − 1)ak

+ T kx
a1(a1 − 1) · · · ak(ak − 1)

.

Notice that, if T k−1x = 0 for some k ≥ 1, and if we assume that k is the smallest
positive integer with this property, then

x =
1

a1
+ · · ·+ 1

a1(a1 − 1) · · · ak−1(ak−1 − 1)ak
.

In case T k−1x 6= 0 for all k ≥ 1, one gets

x =
1

a1
+

1

a1(a1 − 1)a2
+ · · ·+ 1

a1(a1 − 1) · · · ak−1(ak−1 − 1)ak
+ · · · ,

1For ease of notation we drop the argument x from the functions ak(x).

Figure 1. The Lüroth series transformation T from [1]

If we were to represent the expansion under T of a point x ∈ [0.1), we could view
the map T as a symbolic ”shift” map. For instance, if x ∈ [0, 1) had the expansion
a1a2a3 · · · , then T (a1a2a3 · · · ) = a2a3 · · · .
3.1. Ergodic Properties of Lüroth transformation T . Consider the dynami-
cal system (X,B, µ, T ), where (X,B, µ) is a probability space with Lebesgue mea-
sure µ, where X is the set of points in [0, 1) with infinite expansion, and T is
the defined Lüroth transformation. We will compute the average frequency of the
appearance of a single positive integer k ≥ 2 in the expansion of each irrational
x ∈ [0, 1).

Proposition 3.4. T is measure-preserving with respect to Lebesgue measure µ.

Proof. Suppose (a, b) ⊂ [0, 1). We consider T−1(a, b) = {x ∈ X : T (x) ∈ (a, b)}.
We observe for x ∈ T−1(a, b), a < T (x) < b, thus for n = n(x),

1

n+ 1
+

a

n(n+ 1)
<

1

n+ 1
+

T (x)

n(n+ 1)
<

1

n+ 1
+

b

n(n+ 1)
.

Given x = 1
n+1 + T (x)

n(n+1) , we see

x ∈
(

1

n+ 1
+

a

n(n+ 1)
,

1

n+ 1
+

b

n(n+ 1)

)
.

Hence,

T−1(a, b) =
⋃

n≥1

(
1

n+ 1
+

a

n(n+ 1)
,

1

n+ 1
+

b

n(n+ 1)

)
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.
Each of these intervals in the union is disjoint. By the σ-additivity of µ, we find

µ(T−1(a, b)) = µ


⋃

n≥1

(
1

n+ 1
+

a

n(n+ 1)
,

1

n+ 1
+

b

n(n+ 1)

)


=

∞∑

n=1

µ

(
1

n+ 1
+

a

n(n+ 1)
,

1

n+ 1
+

b

n(n+ 1)

)

=

∞∑

n=1

b− a
n(n+ 1)

= (b− a) = µ(a, b)

�

We want next to prove that T is ergodic. To do so, we need a lemma, as well as
the notion of a cylinder set and a few of its properties.

Definition 3.5. A cylinder set of rank n, also known as a fundamental interval of
rank, or order, n, ∆(i1, · · · , in) is the set of all x ∈ X such that a1(x) = i1,
a2(x) = i2, · · · , an(x) = in.

Recall that X is the set of x with infinite Lüroth expansions under T . Cylinder
sets of rank n in the context of the Lüroth transformation T represent the n-
th interval approximation of some x ∈ X. Explicitly, for x ∈ X, if we have A =
1
i1

+ 1
i1(i1−1)i2 +. . .+ 1

i1(i1−1)···in−1(in−1−1) , the cylinder set of rank n ∆(i1, i2, · · · , in)

is the interval (
A,A+

1

i1(i1 − 1) · · · in(in − 1)

)
∩X.

Next, we have a lemma which illustrates a property of the n-th iterate of T
applied to a cylinder set of rank n.

Proposition 3.6. Tn(∆(i1, · · · , in)) = [0, 1).

Proof. The proof of this follows from the fact that T applied to a cylinder set of rank
1 returns [0, 1). We assume the proposition holds for n i.e. Tn(∆(i1, · · · , in)) =
[0, 1). Then, we consider Tn+1(∆(i1, · · · , in, in+1) = T 1(Tn(∆(i1, · · · , in+1), where
Tn(∆(i1, · · · , in+1) is a cylinder set of rank 1, specifically ∆(in+1). Consequently,
Tn+1(∆(i1, · · · , in, in+1) = [0, 1), and the proposition is proven by induction. �

Next, we introduce a lemma. This lemma is a modified version of a lemma due
to Knopp, which can be found in [1]. We notice that the first assumption in the
lemma holds for all sufficient semi-rings.

Lemma 3.7. Suppose (X,B, µ) is a probability space. Let B ∈ B and µ(B) > 0.
If we have a collection C of subintervals of [0, 1) such that

(a) given ε > 0, for every A ∈ B, there exists a countable union of disjoint
elements of C, denoted C∗ such that µ(A∆C∗) < ε, and

(b) for every C ∈ C, µ(C ∩B) ≥ γµ(C), where γ > 0 and is independent of C,

then µ(B) = 1.

Proof. Let Eε be the countable union of sets of C guaranteed by property (a) i.e.
µ(Bc∆Eε) < ε; let {Si}i∈N be the collection of sets of C such that Eε = ti∈NSi.
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We observe B ∩Eε ⊂ Bc∆Eε =⇒ µ(B ∩Eε) ≤ µ(Bc∆Eε). By the σ-additivity of
µ and property (b), we find

µ(B ∩ Eε) =

∞∑

i=1

µ(B ∩ Si) ≥
∞∑

i=1

γµ(Si) = γ

∞∑

i=1

µ(Si) = γµ(Eε)

It is clear γµ(Eε) ≥ γµ(Eε∩B) and γµ(Eε) ≥ γµ(Eε∩Bc). Given Bc \ (Bc∩Eε) ⊂
Bc∆Eε, it follows

γµ(Bc) = γ (µ(Bc ∩ Eε) + µ(Bc \ (Bc ∩ Eε))) < γ · ε+ ε

As ε is arbitrary and γ > 0, we have µ(Bc) = 0⇒ µ(B) = 1. �

Lemma 3.8. For every open subinterval (a, b) of [0, 1), (a, b) ∩ X is an at most
countable union of disjoint cylinder sets.

Proof. For points x ∈ [0, 1) with finite expansion of length n, we denote for all
k > n, ak(x) = ∞. Take x ∈ (a, b) ∩ X. Our transformation T gives us that
(ak)∞k=1(a) � (ak)∞k=1(x) � (ak)∞k=1(b).4 There exists N ∈ N such that ∀n < N ,
an(a) = an(x) and aN (a) > aN (x); similarly, there existsM ∈ N such that ∀m < N ,
am(x) = am(b) and aM (x) > aM (b). We find that x ∈ (a, b) exactly if

x ∈ (
⋃

N∈N

⋃

i<aN (a)

∆(a1(a), · · · , aN−1(a), i))∩(
⋃

M∈N

⋃

j>aM (b)

∆(a1(b), · · · , aM−1(b), j))

and thus,

x ∈ (
⋃

M,N

⋃

i<aN (a)

⋃

j>aM (a)

∆(a1(a), · · · , aN−1(a), i) ∩∆(a1(b), · · · , aM−1(b), j))

As the intersection of two cylinder sets is either another cylinder set or empty, this
implies (a, b) ∩X is at most a countable union of disjoint cylinder sets. �

We prove the ergodicity of T .

Theorem 3.9. T is ergodic.

Proof. Let B be a T -invariant measurable set and µ(B) > 0. Let C be the collection
of all cylinder sets in [0, 1). Fix ε > 0. For any A ∈ B, there exists a finite sequence
of disjoint intervals I1, · · · , In such that µ(A∆tni=1 Ii) < ε by Lemma 1.5 as the set
of all intervals is a sufficient semi-ring. By Lemma 3.8, for all i such that 1 ≤ i ≤ n,
Ii is an at most countable union of disjoint cylinder sets i.e. Ii = tj∈NCi,j where
Ci,j ∈ C for all j ∈ N. Then, we have

µ(A∆

n⊔

i=1

⊔

j∈N
Ci,j) = µ(A∆

n⊔

i=1

Ii) < ε.

Property (a) of Lemma 3.7 is satisfied.
To prove property (b), we observe that Tn is linear on a given cylinder set A ∈ C

of rank n, and thus of constant slope. So, we find

µ(T−n(B) ∩A)

µ(A)
=
µ(B ∩ Tn(A)

µ(Tn(A))
= µ(B).

4Here, the symbol � indicates lexicographical order.
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As B is T -invariant, it follows

µ(B ∩A)

µ(A)
=
µ(T−n(B) ∩A)

µ(A)
.

This implies µ(A ∩ B) = µ(A)µ(B). Put γ = µ(B) > 0, which does not change
depending on A ∈ C. This satisfies property (b) of Lemma 3.7. Then, we apply the
lemma and find µ(B) = 1, which proves T is ergodic. �

We can now apply the Birkhoff Ergodic Theorem to arrive at a result about the
recurrence of a given integer k ≥ 2 in the series expansion generated by T . We
define the following function

f(x) =

{
1, a1(x) = k

0, otherwise

Our function f is a characteristic function which is non-zero when x ∈ [ 1
k−1 ,

1
k ).

Given T ergodic, we apply the theorem and obtain

lim
n→∞

1

n

n−1∑

i=0

f(T k(x)) =

∫
fdµ

=

∫

[ 1
k−1 ,

1
k )

1dµ

= µ

[
1

k − 1
,

1

k

)
=

1

k(k − 1)

The average recurrence of a given integer k ≥ 2 for every x ∈ X (almost every x ∈
[0, 1)) is 1

k(k−1) . In other words, every x ∈ [0, 1) with an infinite Lüroth expansion

under T has asymptotically the same proportion of k in its Lüroth series expansion
under T for all k ≥ 2 i.e. 1

2 of the digits in the expansion will be 2, 1
3(2) = 1

6 as 3,
etc.

This transformation T can be further generalized. Instead of considering fixed
partitions [ 1

n+1 ,
1
n ), we consider a digit set A, which is an at most countable subset

of N and the partition of [0, 1) into intervals {Ln = (ln, rn) : n ∈ A} such that on
each Ln, T is an increasing linear function whose range is an interval with endpoints
0 and 1. We define the corresponding transformation that arises to be a generalized
Lüroth series transformation. The same ergodic properties of T as defined in (3.1)
apply; proofs of such properties and a closer study of these generalized Lüroth series
transformations can be found in [1].

4. The Normal Number Theorem

Another application of Birkhoff Ergodic Theorem is the study of normal num-
bers. We say a number is a simply normal to base b if, for every digit k ∈
{0, 1, · · · , b − 1}, the average frequency of occurrence of k in the base b expan-
sion of x is 1

b . We say that a number is normal to base b if, for every sequence
of m digits, m ∈ N, the average frequency of occurrence of that sequence in the
b-expansion of x is 1

bm

Every number which is normal to base b is simply normal to base b by its def-
inition. This result and the definition of a normal number is due to Borel. Borel



14 WEIAN WANG

further proved in 1909 that except for a subset of measure zero, every x ∈ [0, 1) is
normal. We will prove this result in this section using ergodic theory.

We formalize our definition of the base b series expansion of x ∈ [0, 1) by defining
a transformation

T (x) = bx mod 1 =





bx x ∈ [0, 1b )

bx− 1 x ∈ [ 1b ,
2
b )

...
...

bx− (b− 1) x ∈ [ b−1b , 1)

Our base b expansion results from iterating this map T . We define a1(x) = bbxc and

ak(x) = bbT k−1(x)c = a1(T k−1(x)). From our definition, we have x = a1
b + T (x)

b ,
and we find

x =
a1
b

+
T (x)

b
=
a1
b

+
a2
b2

+
T 2

b2

=
a1
b

+
a2
b2

+ · · ·+ ak
bk

+ · · ·

=

∞∑

j=1

aj(x)

bj

The proof that this series converges to x is straightforward and similar to the case
regarding the Lüroth transformation. In fact, the transformation presented in the
previous section can be seen as a ”generalization” of T , the previously defined map
of the base b expansion. The example transformation presented in Section 3 simply
does not require that the interval partitions be of equal length.

We revisit the definitions of (simply) normal numbers to b and formalize them.
Suppose we have x ∈ [0, 1). For these definitions, we let N(k, n) denote the number
of occurrences of k in n digits of the base b series expansion.

Definition 4.1. A number x ∈ [0, 1) is simply normal to base b if for every k ∈
{0, 1, · · · , b− 1},

lim
n→∞

N(k, n)

n
=

1

b

A normal number generalizes the previous definition for a finite sequence of
digits, as opposed to a singular digit.

Definition 4.2. A number x ∈ [0, 1) is normal to base b if for every m-length
sequence of digits k1k2 · · · km, where k1, · · · , km ∈ {0, 1, · · · , b− 1},

lim
n→∞

1

n
#{r : 1 ≤ r ≤ n and ar(x) = k1, · · · , ar+m−1 = km} =

1

bm
.

We verify T is indeed measure-preserving and ergodic before we apply the Er-
godic theorem.

Proposition 4.3. T is measure-preserving with respect to Lebesgue measure µ.

Proof. To show T is Lebesgue measure-preserving, it suffices to show T preserves
measure for any open (a, b) ⊂ [0, 1). A straightforward manipulation of our defini-
tion T gives us

T−1(a, b) = ∪n−1i=0 (
i

n
+
a

n
,
i

n
+
b

n
)
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, which then implies

µ(T−1(a, b)) = (b− a)

n−1∑

i=0

1

n
= b− a = µ(a, b).

�

Proposition 4.4. T is ergodic with respect to Lebesgue measure µ.

Proof. We consider T when b = 2. This is the transformation that generates the
base 2 series expansion, which is also referred to as the ”doubling map.”

We will use our Lemma 3.11 to prove this result, in a similar fashion as we did
in the previous section for the Lüroth transformation T . Property (a) of Lemma
3.7 follows from Lemma 1.5.

To prove property (b), we let C be the collection of dyadic intervals, where the
dyadic interval is defined as Dn,k = { k2n , k+1

2n }, for n > 0, k = 0, 1, · · · , 2n − 1. We
observe several properties about these intervals.

We find Tn(Dn,k) = [0, 1), and thus, T−n(Dn,k) consists of 2n disjoint dyadic
intervals, each of length 2−2n. Next, we claim for any measurable set A,

µ(T−n(A) ∩Dn,k) = µ(A)µ(Dn,k).

We proceed by induction on n. Consider

µ(T−1(A) ∩D1,k) = µ(T−1(A) ∩ [
k

2
,
k + 1

2
))

where k = 0, 1. Since A is Lebesgue measurable, it can be approximated up to a
set of measure zero by the union of a countable disjoint collection of open intervals
I1, · · · , In, · · · . We denote Ii = (ai, bi). Then,

T−1(Ii) = T−1(ai, bi) = (
ai
2
,
bi
2

) ∪ (
ai
2

+
1

2
,
bi
2

+
1

2
).

Depending on k, either (ai2 ,
bi
2 ) ⊂ D1,k and (ai2 + 1

2 ,
bi
2 + 1

2 ) ∩D1,k = ∅ or

(ai2 + 1
2 ,

bi
2 + 1

2 ) ⊂ D1,k and (ai2 ,
bi
2 ) ∩D1,k = ∅. So, it follows

µ(T−1(Ii) ∩D1,k) =
1

2
µ(Ii) = µ(D1,k)µ(Ii)

which implies

µ(T−1(A) ∩D1,k) = µ(T−1(

n⋃

i=1

Ii) ∩D1,k) = µ(
∞⋃

i=1

(T−1(Ii) ∩D1,k))

=
1

2
µ(

∞⋃

i=1

Ii)

=
1

2
µ(A) = µ(D1,k)µ(A).

We suppose the claim holds for some n ∈ N. We consider

µ(T−(n+1)(A)
⋂
Dn+1,k) = µ(T−n(T−1(A)) ∩Dn+1,k).

We observe

Dn,k =

[
k

2n
,
k + 1

2n

)
=

[
k

2n+1
,
k + 1

2n+1

)
∪
[
k + 1

2n+1
,
k + 2

2n+1

)
= Dn+1,k ∪Dn+1,k+1
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where Dn+1,k and Dn+1,k+1 are clearly disjoint and of the same length. It follows

µ(T−n(T−1(A)) ∩Dn,k) = µ(T−n(T−1(A)) ∩ (Dn+1,k ∪Dn+1,k+1))

= µ(T−n(T−1(A)) ∩Dn+1,k) + µ(T−n(T−1(A)) ∩Dn+1,k+1).

As the claim holds for arbitrary k, this implies

µ(T−n(T−1(A)) ∩Dn+1,k) =
1

2
µ(T−n(T−1(A)) ∩Dn,k)

=
1

2
µ(Dn,k)µ(T−1(A))

= µ(Dn+1,k)µ(A).

By induction on n, the claim is proven.
Suppose A is a T -invariant set i.e. T−1(A) = A such that µ(A) > 0. Then

µ(A ∩Dn,k) = µ(A)µ(Dn,k).

We let γ = µ(A) as in Lemma 3.7, and property (b) holds. Then, by Lemma 3.7,
µ(A) = 1, and T is ergodic when n = 2.

The case for the general base b expansion follows similarly. In place of the dyadic
interval, we define an interval Ab,n,k = [ kbn ,

k+1
bn ) where n > 0, k = 0, 1, · · · , bn − 1.

The collection C of all such intervals satisfies property (a), and we find

µ(A ∩Ab,n,k) = µ(A)µ(Ab,n,k)

by induction. An application of Lemma 3.7 again proves that for a general b ≥ 2,
the base b transformation map is ergodic with respect to Lebesgue measure µ. �

We apply the Birkhoff Ergodic Theorem.

Theorem 4.5. Almost every real x ∈ [0, 1) is normal.

Proof. Given ak(x) = a1(T k−1(x)) for k ≥ 2, we have aj(T
k(x)) = aj+k(x). For

any n ∈ N,

aj(x) = k1 ⇐⇒ a1(T j−1(x)) = k1,

aj+1(x) = k2 ⇐⇒ a2(T j−1(x)) = k2,

...
...

aj+n−1(x) = kn ⇐⇒ an(T j−1(x)) = kn

By our definition, a1(T j−1(x)) = k1 ⇐⇒ T j−1(x) ∈ [k1b ,
k1+1
b ) and an(T j−1(x)) =

kn ⇐⇒ T j−1(x) ∈ [knbn ,
kn+1
bn ). Equivalently, T j−1(x) ∈ [

∑n
i=1

ki
bi ,
∑n
i=1

ki
bi + 1

bn ).
We define a characteristic function

f(x) =

{
1 Tj−1(x) ∈

[∑n
i=1

ki
bi ,
∑n
i=1

ki
bi + 1

bn

)

0 otherwise

We apply the Birkhoff Ergodic Theorem to f and arrive at the following:

lim
n→∞

1

n

n−1∑

i=0

f(T k(x)) =

∫
fdµ = µ

([
n∑

i=1

ki
bi
,

n∑

i=1

ki
bi

+
1

bn

))
=

1

bn

That the average occurrence of every n-length finite sequence of digits k1k2 · · · kn
is 1

bn proves that almost every x ∈ [0, 1) is normal. �
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