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Abstract. The problem of giving necessary and sufficient conditions for Fourier

multipliers to be bounded on Lp spaces does not have a satisfactory answer

for general p. In this paper, some of the facts that are known about Fourier
multipliers are detailed. The starting point is a quick tour of singular integral

theory, leading into the Mikhlin multiplier theorem. An important application

to Littlewood-Paley theory and a proof C. Fefferman’s ball multiplier theorem
is presented.
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1. Introduction

A Fourier multiplier is a function m from Rd to C that defines an operator
Tm through multiplication on a function’s frequency spectrum. In particular, the

operator Tm is defined on the Schwartz space S(Rd) by Tmf = (mf̂)∨, where

f̂(ξ) = (f)∧(ξ) =

∫
Rd

f(x)e−2πiξ·x dx

and
∨
f(x) = (f)∨(x) =

∫
Rd

f(ξ)e2πix·ξ dξ

are the Fourier transform and inverse Fourier transform of the function f , respec-
tively. It is natural to seek conditions on m under which Tm can be extended to a
bounded operator on Lp. For general p, there is no known characterization of such
m, but the Mikhlin multiplier theorem provides convenient sufficient conditions.
The majority of this paper is dedicated to proving this theorem and an important
application of it. The ball multiplier theorem, which says that Tm is unbounded for
p 6= 2 and d > 1 when m is the characteristic function of the unit ball, is presented
at the end to show the difficulty of a general theory. Theorem 2.8 will use the
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fundamental Calderón-Zygmund decomposition of a function, which can be found
in [1, p. 44]. Most of the proofs in this paper are influenced by those in [1] and [2].

2. Calderón-Zygmund Operators

The goal of this section is to prove the boundedness of a class of operators on Lp

for 1 < p <∞. This result will be used to prove an important theorem on Fourier
multipliers.

Definition 2.1. A Calderón-Zygmund kernel is a function K : Rd \ {0} → C that
satisfies

(K1)
∣∣K(x)

∣∣ ≤ B|x|−d for all x ∈ Rd
(K2)

∫
[|x|>2|y|]

∣∣K(x)−K(x− y)
∣∣dx ≤ B for all y 6= 0

(K3)
∫
[r<|x|<s]K(x) dx = 0 for all r, s > 0

for some constant B. The Calderón-Zygmund operator T associated with the kernel
K is defined by

(2.2) Tf(x) = lim
ε→0

∫
[|x−y|>ε]

K(x− y)f(y) dy

for all f ∈ S(Rd).

Note that the limit in (2.2) exists for all x. Indeed, using (K3) followed by (K1)
we have∣∣∣∣∣

∫
[1>|x−y|>ε]

K(x− y)f(y) dy

∣∣∣∣∣ =

∣∣∣∣∣
∫
[1>|y|>ε]

K(y)(f(x− y)− f(x)) dy

∣∣∣∣∣
≤ B

(
sup
∣∣∇f(y)

∣∣) ∫
[1>|y|>ε]

dy

|y|d−1
,

and the part of the integral with |x− y| > 1 is easily controlled using (K1) and
Schwartz bounds on f . Note how the limit in (2.2) and the smoothness of f allows
us to use the cancellation property in (K3). The following result allows one to check
that (K2) holds for a kernel given a bound on the derivative.

Theorem 2.3. Let K : Rd \ {0} → C satisfy
∣∣∇K(x)

∣∣ ≤ B|x|−d−1 for all x 6= 0
and some B > 0. Then

(2.4)

∫
[|x|>2|y|]

∣∣K(x)−K(x− y)
∣∣dx ≤ CB,

for all y 6= 0 and C = C(d) a constant depending only on d, and therefore K
satisfies (K2).

Proof. Fix x, y ∈ Rd with|x| > 2|y|. Define γ : [0, 1]→ Rd by γ(t) = (1−t)(x−y)+tx.
Then the image of γ is the line segment connecting x − y and x and is contained
in B(x,|x| /2). We have∣∣K(x)−K(x− y)

∣∣ =

∣∣∣∣∫ ∇K · dγ∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

(∇K)(x− (1− t)y) · y dt

∣∣∣∣∣
≤
∫ 1

0

∣∣((∇K)(x− (1− t)y)
∣∣|y|dt ≤ B2d+1|x|−d−1|y| .
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Using this estimate and∫
[|x|>2|y|]

1

|x|d+1
dx ≤ C(d)

1

|x|
≤ C(d)

1

|y|

on (2.4) finishes the proof. �

The Hilbert transform is given by a Calderón-Zygmund operator with kernel 1/x.

More generally, any kernel of the form Ω(x/|x|)|x|−d, where Ω is a smooth function
on the unit sphere with mean value 0, defines a Calderón-Zygmund operator.

Conditions (K1)-(K3) are sufficient to prove that T can be extended to a bounded
operator on L2. Together with a weak-L1 bound, Marcinkiewicz interpolation, and
a duality argument, this shows that T is in fact bounded on Lp for 1 < p < ∞,
failing at the endpoints. Since the weak-L1 bounds do not require (K3), it is often
desirable to consider kernels for which (K3) does not necessarily hold, instead taking
as hypothesis boundedness on L2. Then Lp boundedness holds for this larger class
of operators.

The failure of boundedness at p = 1 can be seen qualitatively by considering
the action of T on the Dirac delta distribution δ0. In particular, we have Tδ0 '
1/|x|d 6∈ L1(Rd). Formally, one approximates δ0 by an approximate identity and
uses a limiting process.

Theorem 2.5. The operator T associated with a kernel K as in Definition 2.1 can
be extended to a bounded operator on L2. Specifically ‖Tf‖L2 ≤ CB‖f‖L2 for all
f ∈ S, where C = C(d) depends only on the dimension d.

Proof. Let K be as in Definition 2.1. We write χ[r<|y|<s] to represent the charac-
teristic function of the annulus with inner and outer radii r and s. Define

(Tr,sf)(x) =

∫
Rd

K(y)χ[r<|y|<s](y)f(x− y) dy

for 0 < r < s < ∞. Let mr,s be the Fourier transform of the restricted kernel
y 7→ K(y)χ[r<|y|<s](y). By Plancherel’s theorem, we know∥∥Tr,sf∥∥L2 =

∥∥∥(Kχ[r<|y|<s] ∗ f)∧
∥∥∥
L2

=
∥∥∥mr,sf̂

∥∥∥
L2
≤
∥∥mr,s

∥∥
L∞
‖f‖L2 ,

and so it suffices to prove sup0<r<s

∥∥mr,s

∥∥
L∞
≤ CB; if this holds, then the pointwise

identity Tf(x) = limr→0,s→∞(Tr,sf)(x) and Fatou’s lemma finish the proof. To
prove this L∞ bound on the Fourier transform, we split the integral as follows

(2.6)
∣∣mr,s(ξ)

∣∣ ≤ ∣∣∣∣∣
∫
[r<|x|<|ξ|−1]

e−2πix·ξK(x) dx

∣∣∣∣∣+

∣∣∣∣∣
∫
[|ξ|−1<|x|<s]

e−2πix·ξK(x) dx

∣∣∣∣∣ .
Using (K3) followed by (K1) on the first integral, we have∣∣∣∣∣

∫
[r<|x|<|ξ|−1]

e−2πix·ξK(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
[r<|x|<|ξ|−1]

(e−2πix·ξ − 1)K(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
[|x|<|ξ|−1]

2π|x||ξ|
∣∣K(x)

∣∣ dx∣∣∣∣∣
≤ 2π|ξ|

∫
[|x|<|ξ|−1]

B|x|−d+1
dx ≤ CB.
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The second integral bound uses condition (K2) and cancellation properties of e−2πix·ξ.
We have

F :=

∫
[|ξ|−1<|x|<s]

K(x)e−2πix·ξ dx = −
∫
[|ξ|−1<|x|<s]

K(x)e−2πi(x+ξ/(2|ξ|
2))·ξ dx

=

∫
[|ξ|−1<|x−ξ/(2|ξ|2)|<s]

K

(
x− ξ

2|ξ|2

)
e−2πix·ξ dx

and therefore

(2.7) 2F =

∫
[|ξ|−1<|x|<s]

K(x)−K

(
x− ξ

2|ξ|2

) e−2πix·ξ dx+R

where R is defined appropriately. The first term in (2.7) is controlled in ab-
solute value via (K2). The R represents the difference in the integration re-

gions [|ξ|−1 < |x| < s] and [|ξ|−1 <
∣∣∣x− ξ/(2|ξ|2)

∣∣∣ < s]. We can use (K1) to prove

|R| < CB. Specifically, the difference in integration regions can be split into four
parts:

|ξ|−1 < |x| < s and
∣∣∣x− ξ/(2|ξ|2)

∣∣∣ ≤|ξ|−1
|ξ|−1 < |x| < s and s ≤

∣∣∣x− ξ/(2|ξ|2)
∣∣∣

|ξ|−1 <
∣∣∣x− ξ/(2|ξ|2)

∣∣∣ < s and |x| ≤|ξ|−1

|ξ|−1 <
∣∣∣x− ξ/(2|ξ|2)

∣∣∣ < s and s ≤|x| .

Noting that the first region is a subset of the region [|ξ|−1 /2 ≤
∣∣∣x− ξ/(2|ξ|2)

∣∣∣ ≤|ξ|−1],

condition (K1) easily shows the integral over the region to be less than CB. A sim-
ilar argument works for the other three regions. This finishes the proof. �

We now prove that T has a weak-L1 bound via the Calderón-Zygmund decom-
position.

Theorem 2.8. Let T be a linear operator that is bounded on L2(Rd) such that

(Tf)(x) =

∫
Rd

K(x− y)f(y) dy

for all f ∈ L2 with compact support and for all x 6∈ supp(f), and such that K
satisfies (K2) with constant B. Then for all f ∈ S(Rd) we have the weak-L1 bound∣∣∣∣{x ∈ Rd :

∣∣Tf(x)
∣∣ > λ

}∣∣∣∣ ≤ CB

λ
‖f‖L1

for all λ > 0, where C depends only on the dimension d.

Proof. By dividing K by B, we can assume without loss of generality that B = 1.
Fix f ∈ S(Rd) and λ > 0. Using the Calderón-Zygmund decomposition of a
function with height λ, we can write f = g + b, where g is the ‘good’ and b is
the ‘bad’ part of f . The decomposition gives g and b with the following properties
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(see [1, p. 44] for proof). There is a collection B of disjoint cubes for which
b =

∑
Q∈B χQf . We have

∣∣∪Q∈BQ∣∣ < λ−1‖f‖L1 , and for any Q ∈ B we have

λ <
1

|Q|

∫
Q

|f | ≤ 2dλ.

Here |·| is Lebesgue measure. Finally, we have |g| ≤ λ.
Define

f1 = g +
∑
Q∈B

χQ
1

|Q|

∫
Q

f(x) dx

f2 = b−
∑
Q∈B

χQ
1

|Q|

∫
Q

f(x) dx =
∑
Q∈B

fQ

where

fQ = χQ

(
f − 1

|Q|

∫
Q

f(x) dx

)
.

Clearly f = f1 + f2. From |g| < λ,
∫
Q
|f | ≤ |Q| 2dλ, and the cubes and supp(g)

are disjoint, we conclude ‖f1‖L∞ ≤ 2dλ. From the definition of fQ it is clear that
‖f2‖L1 ≤ 2‖f‖L1 , and a similar argument shows that ‖f1‖L1 ≤‖f‖L1 . Finally it is
clear that the fQ have mean value zero; that is∫

Q

fQ(x) dx = 0.

Using Chebyshev’s inequality, we have

(2.9)

∣∣∣∣{x ∈ Rd :
∣∣(Tf)(x)

∣∣ > λ
}∣∣∣∣ ≤

∣∣∣∣∣
{
x ∈ Rd :

∣∣(Tf1)(x)
∣∣ > λ

2

}∣∣∣∣∣
+

∣∣∣∣∣
{
x ∈ Rd :

∣∣(Tf2)(x)
∣∣ > λ

2

}∣∣∣∣∣
≤ C

λ2
‖Tf1‖2L2 +

∣∣∣∣∣
{
x ∈ Rd :

∣∣(Tf2)(x)
∣∣ > λ

2

}∣∣∣∣∣ .
Since we assumed T bounded on L2, the first term on the last line of (2.9) is
bounded:

C

λ2
‖Tf1‖2L2 ≤

CB

λ2
‖f1‖2L2 ≤

CB

λ2
‖f1‖L∞‖f1‖L1 ≤

CB

λ
‖f1‖L1 .

So it only remains to estimate the second term. Define Q∗ to be the dilate of Q by
2
√
d for any Q ∈ B (that is, Q∗ and Q share a center and Q∗ has edges longer than

Q by a factor of 2
√
d). Then∣∣∣∣∣

{
x ∈ Rd :

∣∣(Tf2)(x)
∣∣ > λ

2

}∣∣∣∣∣ ≤|∪BQ∗|+
∣∣∣∣∣
{
x ∈ Rd \ ∪BQ∗ :

∣∣(Tf2)(x)
∣∣ > λ

2

}∣∣∣∣∣
≤ C

∑
Q∈B
|Q|+ 2

λ

∫
Rd\∪Q∗

∣∣(Tf2)(x)
∣∣dx

≤ C

λ
‖f‖L1 +

2

λ

∑
Q∈B

∫
Rd\Q∗

∣∣(TfQ)(x)
∣∣dx,
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where we have used Chebyshev’s inequality and the the property∣∣∣∣∣∣
⋃
Q∈B

Q

∣∣∣∣∣∣ < 1

λ
‖f‖L1

of B. For any x ∈ Rd \Q∗ we have

(TfQ)(x) =

∫
Q

K(x− y)fQ(y) dy =

∫
Q

(K(x− y)−K(x− yQ))fQ(y) dy

since fQ has mean value 0, where yQ is the center of the cube Q. This expression
allows us to exploit (K2):∫

Rd\Q∗

∣∣(TfQ)(x)
∣∣dx ≤ ∫

Rd\Q∗

∫
Q

∣∣K(x− y)−K(x− yQ)
∣∣∣∣fQ(y)

∣∣dy dx

≤
∫
Q

∣∣fQ(y)
∣∣dy ≤ 2

∫
Q

∣∣f(y)
∣∣dy.

Note how the selection of Q∗ allows us to apply (K2). Since the Q are disjoint, this
finishes the proof. �

Now we use interpolation between the L2 and weak-L1 bounds to obtain Lp

boundedness of singular integral operators.

Theorem 2.10. Let T be a singular integral operator bounded on L2(Rd) with
kernel that satisfies (K1) and (K2). Then T can be extended to a bounded operator
on Lp(Rd) for every 1 < p <∞ with an operator norm ‖T‖Lp→Lp ≤ C(p, d)B.

Proof. The statement for 1 < p < 2 is a consequence of Marcinkiewicz interpolation,
and the statement for p = 2 is assumed. The statement for 2 < p <∞ follows from
a duality argument and is as follows. Let f, g ∈ S(Rd). Then 〈Tf, g〉 = 〈f, T ∗g〉
where T ∗ is a singular integral operator associated with kernel K∗(x) = K(−x).
Clearly K∗ satisfies (K1) and (K2), and a simple duality argument shows that T ∗

is bounded on L2. Applying the same arguments to T ∗ as we have to T , we see
that T ∗ is bounded on Lq for 1 < q ≤ 2. Since 1 < p′ ≤ 2, we have

‖Tf‖Lp = sup
‖g‖

Lp′=1

〈Tf, g〉 = sup
‖g‖

Lp′=1

〈f, T ∗g〉

≤‖f‖Lp sup
‖g‖

Lp′=1

‖T ∗g‖Lp′ ≤ CB‖f‖Lp .

�

3. The Mikhlin Multiplier Theorem

A Fourier multiplier is a function m : Rd → C that defines a corresponding

operator Tm by f 7→ (mf̂)∨ on the space of Schwartz functions. A natural problem
is to determine conditions under which such operators can be extended as a bounded
operator on Lp. For L2, the problem is easy using Plancherel’s theorem: the
operator is bounded if and only if m is in L∞(Rd). The Mikhlin multiplier theorem
gives sufficient conditions for such an operator to be bounded on Lp for 1 < p <∞;
however, it is by no means a complete classification. To start, we must construct a
partition of unity on a geometric scale.
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Theorem 3.1. There exists a function ψ ∈ C∞(Rd) such that supp(ψ) ⊂ Rd \ {0}
is compact and such that

∞∑
j=−∞

ψ(2−jx) = 1.

for all x 6= 0. We call such a ψ a dyadic partition of unity, and define ψj(x) =
ψ(2−jx). We will construct ψ to be radial, nonnegative, and so that only at most
two terms in the sum are nonzero.

Proof. Let χ ∈ C∞(Rd) be radial with χ(x) = 1 for|x| ≤ 1, χ(x) < 1 for 1 < |x| < 2,
and χ(x) = 0 for |x| ≥ 2. Define ψ(x) = χ(x) − χ(2x). It is immediately verified
that ψ is radial and nonnegative. Moreover for any positive integer N we have

N∑
j=−N

ψ(2−jx) = χ(2−Nx)− χ(2N+1x).

For N sufficiently large and x 6= 0, we have
∣∣2−Nx∣∣ ≤ 1 and

∣∣2N+1x
∣∣ ≥ 2, and so

the sum is 1. This finishes the proof. �

Theorem 3.2. (Mikhlin Multiplier Theorem) Let m : Rd \ {0} → C satisfy∣∣∂γm(ξ)
∣∣ ≤ B|ξ|−|γ|

for any multi-index γ with |γ| ≤ d+ 2 and for all ξ 6= 0. Then there exist constants
C(d, p) for 1 < p <∞ such that∥∥∥∥(mf̂)∨∥∥∥∥

Lp

≤ C(d, p)B‖f‖Lp

for all f ∈ S.

This theorem implies the Lp boundedness of a wide range of multipliers, e.g. the
sgn function in one dimension and smooth functions of compact support.

Proof. With ψ a dyadic partition of unity, define mj(ξ) = ψ(2−jξ)m(ξ). Let Kj =
∨
mj , and

K(x) =

N∑
j=−N

Kj(x).

for a fixed, large positive integer N . We will prove the estimates

(3.3)
∣∣K(x)

∣∣ ≤ C(d)B|x|−d ,
∣∣∇K(x)

∣∣ ≤ C(d)B|x|−d .

hold uniformly in N . A calculation gives
∥∥∂γmj

∥∥
L∞
≤ CB2−j|γ| for all multi-

indices γ with |γ| ≤ d+ 2. To see this, let R > 0 be such that supp(ψ) ⊂ B(0, R).
Then∣∣∣∣∂γ (m(ξ)ψ(2−jξ)

)∣∣∣∣ ≤ C ∑
α,α<γ

∣∣∂αm(ξ)
∣∣∣∣∣∂γ−αψ(2−jξ)

∣∣∣
≤ CB

∑
α,α<γ

|ξ|−|α| (1− χ[B(0,2jR)])2
−j(|γ|−|α|) sup

β,x

∣∣∣∂βψ(x)
∣∣∣

≤ CB
∑
α,α<γ

R−|α|2−j|α|2−j(|γ|−|α|) ≤ CB2−j|γ|.
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This estimate and the compactness of supp(ψ) gives
∥∥∂γmj

∥∥
L1 ≤ CB2−j|γ|2jd.

This result and another compactness argument yields∥∥∂γ(ξimj)
∥∥
L1
≤ C

∥∥ξi∂γmj

∥∥
L1

+ C
∑

α,|α|=|γ|−1

∥∥∂αmj

∥∥
L1 ≤ CB2−j(|γ|−1)2jd.

We have ∥∥∥xγ ∨mj(x)
∥∥∥
L∞

= C
∥∥(∂γmj)

∧∥∥
L∞
≤ C

∥∥∂γmj

∥∥
L1 ≤ CB2j(d−|γ|)

and similarly ∥∥∥xγD ∨mj(x)
∥∥∥
L∞
≤ CB2j(d+1−|γ|).

Note that these manipulations are justified by the compact support and differen-

tiability of mj . Since |x|k ≤ C(k, d)
∑
γ,|γ|=k|xγ |, we arrive at

(3.4)
∣∣∣ ∨mj(x)

∣∣∣ ≤ CB2j(d−k)|x|−k ,
∣∣∣D ∨mj(x)

∣∣∣ ≤ CB2j(d+1−k)|x|−k

for any 0 ≤ k ≤ d+ 2 and all j ∈ Z, x ∈ Rd \ {0}. We will prove the first inequality
in (3.3) by using the first inequality in (3.4) with k = 0 and k = d + 2, and the
same method can be used to prove the second inequality in (3.3) with the second
inequality in (3.4). We have∣∣K(x)

∣∣ ≤ ∞∑
j=−∞

∣∣∣ ∨mj(x)
∣∣∣ ≤ ∑

2j≤|x|−1

∣∣∣ ∨mj(x)
∣∣∣+

∑
|x|−1<2j

∣∣∣ ∨mj(x)
∣∣∣

≤ CB
∑

2j≤|x|−1

2jd + CB
∑

|x|−1<2j

2jd(2j |x|)−(d+2)

≤ CB|x|−d + CB|x|2|x|−(d+2)
= CB|x|−d .

This shows that K satisfies (K1), independent on N . A similar proof yields∣∣∇K(x)
∣∣ < CB|x|−d−1, which implies K satisfies (K2). Note∥∥∥(mf̂)∨

∥∥∥
L2

=
∥∥∥mf̂∥∥∥

L2
≤‖m‖L∞

∥∥∥f̂∥∥∥
L2

=‖m‖L∞‖f‖L2 ,

and since‖m‖L∞ ≤ B by hypothesis, we know that m is bounded as a Fourier mul-
tiplier on L2. Sending N to infinity, the resulting operator satisfies the requirements
of a Calderón-Zygmund operator with L2 boundedness in place of (K3). Therefore,
the operator is bounded on Lp for 1 < p <∞, as desired. �

We remark here that while the Mikhlin multiplier theorem provides useful suf-
ficient conditions for Lp boundedness of Fourier multipliers, it is not discerning
enough for a satisfactory theory; it does not distinguish between p so long as
1 < p <∞.

An interesting consequence of the Mikhlin multiplier theorem is a class of esti-
mates important for elliptic partial differential equations.

Corollary 3.5. A Fourier multiplier m that is homogenous of degree 0 and smooth
everywhere except at 0 defines an operator bounded on Lp. As a consequence, we
have the following Schauder estimate:

(3.6)

∥∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥∥
Lp

≤ C(p, d)‖4u‖Lp
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for u ∈ S(Rd), for indices i, j with 1 ≤ i, j ≤ d, for 1 < p < ∞, and for C(p, d) a
constant depending only on d and p.

Proof. By writing a difference quotient, we see that the directional derivative of m
at x is maximized when taken along the direction perpendicular to x. By homo-
geneity, we see that this derivative is equal to the directional derivative of m at
x/|x| scaled by 1/|x|. By continuing writing difference quotients, we see that an
nth order partial derivative of m at x is equal to the nth order partial derivative
of m at x/|x| scaled by 1/|x|n. By smoothness of m and compactness of the unit
circle, we can then bound all partial derivatives of order less than or equal to d+ 2
globally. Thus m satisfies the hypotheses of theorem 3.2, and is a Fourier multiplier
bounded from Lp to Lp for 1 < p <∞.

The Schauder estimate (3.6) follows from the formula(
∂2u

∂xi∂xj

)∧
(ξ) =

ξiξj

|ξ|2
(4u)∧(ξ)

and the fact that m(ξ) = ξiξj/|ξ|2 is homogenous of degree 0. �

4. Littlewood-Paley Theory

In this section, we develop the basic ideas of Littlewood-Paley theory. Define

Pjf = (ψj f̂)∨ for j ∈ Z and f ∈ S(Rd), where the ψj are the functions defined in
3.1. Define the Littlewood-Paley square function Sf by

Sf =

 ∞∑
j=−∞

∣∣Pjf ∣∣2
1/2

.

Using Plancherel’s theorem, we have

‖Sf‖2L2 =

∞∑
j=−∞

∥∥Pjf∥∥2L2 =

∞∑
j=−∞

∥∥∥ψj f̂∥∥∥2
L2

=

∫
Rd

 ∞∑
j=−∞

∣∣ψj(x)
∣∣2∣∣∣f̂(x)

∣∣∣2 dx.

From this equality, it is easy to see that ‖Sf‖L2 ≤ ‖f‖L2 . By using the fact

that at most two terms of
∑
j

∣∣ψj(x)
∣∣2 are nonzero, it can be shown that in fact

‖Sf‖L2 ≥ C−1‖f‖L2 for an absolute constant C. It is natural to ask: does a similar
inequality hold for p other than 2? The goal of this section is to prove such an
inequality for 1 < p <∞.

Define ρN = {r = (rj)
N
j=1 : rj = ±1}. For any finite set A let #A be the number

of elements in A. The following two lemmas come from probability theory, but here
will be presented as analytical facts in the interest of being self-contained.

Lemma 4.1. For any (aj)
N
j=1 ⊂ C with

∑N
j=1

∣∣aj∣∣ = 1, we have

(4.2) #

r ∈ ρN :

∣∣∣∣∣∣
N∑
j=1

rjaj

∣∣∣∣∣∣ > λ

 ≤ 4e−λ
2/2#ρN

for all λ > 0.
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Proof. Set SN (r) =
∑N
j=1 rjaj . Make first the assumption that (aj)

N
j=1 ⊂ R. The

more general case will follow from decomposition into real and imaginary parts. It
is easy to check via an expansion that

1

#ρN

∑
r∈ρN

eλSN (r) =

N∏
j=1

1

2

∑
rj=±1

eλrjaj =

N∏
j=1

cosh(λaj).

Using the bound cosh(x) ≤ exp(x2/2) from calculus, one has

1

#ρN

∑
r∈ρN

eλSN (r) ≤ exp

1

2
λ2

N∑
j=1

a2j

 = eλ
2/2.

Combining this with the Chebyshev inequality∑
r∈ρN

eλSN (r) ≥ eλ
2

#
{
r ∈ ρN : eλSN (r) > eλ

2
}

= eλ
2

#
{
r ∈ ρN : SN (r) > λ

}
gives

#
{
r ∈ ρN : SN (r) > λ

}
≤ e−λ

2

eλ
2/2#ρN = e−λ

2/2#ρN .

A similar argument gives

#
{
r ∈ ρN : SN (r) < −λ

}
≤ e−λ

2/2#ρN

whence the lemma holds for our restricted (aj). By decomposing the (aj) into real
and imaginary parts (bj) and (cj) and noting∣∣∣∣∣∣

N∑
j=1

rjaj

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
N∑
j=1

rjbj

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
N∑
j=1

rjcj

∣∣∣∣∣∣
2

we have reduced the lemma to one of the previous cases, losing a factor of two in
the process. �

The following result is known as Klinchine’s inequality.

Lemma 4.3. Let 1 < p <∞. Then, for any r ∈ ρN and (aj)
N
j=1 ⊂ C, one has

(4.4)
1

C(p)

 N∑
j=1

∣∣aj∣∣2
p/2

≤ 1

#ρN

∑
r∈ρN

∣∣∣∣∣∣
N∑
j=1

rjaj

∣∣∣∣∣∣
p

≤ C(p)

 N∑
j=1

∣∣aj∣∣2
p/2

for some constant C(p).

Proof. Let SN (r) =
∑N
j=1 rjaj as before. By dividing each term of (aj) by

∑N
j=1

∣∣aj∣∣,
we may assume

∑N
j=1

∣∣aj∣∣ = 1. The upper bound will be obtained through the es-
timate achieved in Lemma 4.1. We have

1

#ρN

∑
r∈ρN

∣∣SN (r)
∣∣p =

1

#ρN

∫ ∞
0

#{r ∈ ρN :
∣∣SN (r)

∣∣ > λ}pλp−1 dλ

≤
∫ ∞
0

4e−λ
2/2pλp−1 dλ = C(p) <∞.

Note that ∑
r∈ρN

∣∣SN (r)
∣∣2 =

∑
r∈ρN

 N∑
j=1

a2jr
2
j +

∑
n 6=m

cn,mrnrm


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where cn,m depends on the sequence (aj). But noting that rnrm is equally often

+1 and −1, we see that
∑
r∈ρN

∣∣SN (r)
∣∣2 = #ρN

∑∣∣aj∣∣2 = #ρN . This shows that
equality holds in the lemma for p = 2. We leverage this result and the lower bound
to finish the lemma. By applying Holder’s inequality, we have

1 =
1

#ρN

∑
r∈ρN

∣∣SN (r)
∣∣2 ≤

 1

#ρN

∑
r∈ρN

∣∣SN (r)
∣∣p′1/p′  1

#ρN

∑
r∈ρN

∣∣SN (r)
∣∣p1/p

≤ C(p′)1/p
′

 1

#ρN

∑
r∈ρN

∣∣SN (r)
∣∣p1/p

,

and the proof is finished. �

Now that we have established the Mikhlin Multiplier theorem and Klinchine’s
inequality, we are ready to prove the deep Littlewood-Paley square function esti-
mate.

Theorem 4.5. For 1 < p < ∞, the Littlewood-Paley square function Sf has an
Lp norm comparable to the Lp norm of f . That is

C(p, d)−1‖f‖Lp ≤‖Sf‖Lp ≤ C(p, d)‖f‖Lp

for some constant C(p, d).

Proof. Define the Fourier multipliers

mN,r(ξ) =

N∑
j=−N

rjψj(ξ)

for every r ∈ ρN and every N . We claim that the hypotheses of the Mikhlin
multiplier theorem are satisfied uniformly in N and r. We have

∣∣∂γmN,r(ξ)
∣∣ ≤ N∑

j=−N

∣∣∂γψj(ξ)∣∣ =
∑

j=−NN

2−j|γ|
∣∣∣(∂γψ)(2−jξ)

∣∣∣ .
for any multi-index γ and ξ 6= 0. Note that 2−j|γ| is within a factor of two of |ξ|−|γ|
whenever (∂γψ)(2−jξ) is nonzero. Moreover, only an absolutely bounded number
of terms of the final sum (here exactly two) are nonzero at any one time. This
allows us to assert∣∣∂γmN,r(ξ)

∣∣ ≤ C ∑
j=−NN

|ξ|−|γ|
∣∣∣(∂γψ)(2−jξ)

∣∣∣ ≤ C|ξ|−|γ| .
Note that this inequality works trivially for ξ = 0. We now use Lemma 4.3 with
aj = (Pjf)(x) to say N∑

j=−N

∣∣(Pjf)(x)
∣∣2p/2

≤ C

#ρN

∑
r∈ρN

∣∣∣∣∣∣
N∑

j=−N
rj(Pjf)(x)

∣∣∣∣∣∣
p
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for all x. If we now integrate both sides, take the lim sup in N , and apply the
Mikhlin multiplier theorem, we have∫

Rd

∣∣(Sf)(x)
∣∣p dx ≤ lim sup

N→∞

C

#ρN

∑
r∈ρN

∫
Rd

∣∣∣∣∣∣
N∑

j=−N
rj(Pjf)(x)

∣∣∣∣∣∣
p

dx ≤ C‖f‖pp .

Duality is used to prove the lower bound. Let ψ̃ be a function that is 1 on supp(ψ),

compactly supported, and has 0 6∈ supp(ψ̃). Define P̃j with ψ̃ in place of ψ, and

similarly define S̃. Then clearly P̃jPj = Pj . Let f, g ∈ S be arbitrary. Applying
Plancherel’s theorem twice, we have

∣∣〈f, g〉∣∣ =

∣∣∣∣∫
Rd

f̂(ξ)ĝ(ξ) dξ

∣∣∣∣ =

∣∣∣∣∣∣
∫
Rd

∞∑
j=−∞

f̂(ξ)ψj(ξ)ĝ(ξ)ψ̃j(ξ) dξ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

j=−∞

〈
Pjf, P̃jg

〉∣∣∣∣∣∣ .
Therefore, by the Cauchy-Schwarz inequality and Holder’s inequality, we have

∣∣〈f, g〉∣∣ ≤ ∫
Rd

 ∞∑
j=−∞

∣∣(Pjf)(x)
∣∣21/2 ∞∑

k=−∞

∣∣∣(P̃kg)(x)
∣∣∣2
1/2

≤‖Sf‖p
∥∥∥S̃g∥∥∥

p′
≤ C‖Sf‖p‖g‖p′ ,

where the upper bound on
∥∥∥S̃g∥∥∥

p′
comes from the same argument we used for the

upper bound of ‖Sf‖p applied to S̃. Noting that ‖f‖p = sup‖g‖p′=1

∣∣〈f, g〉∣∣, we see

that this proves the lower bound. �

The failure of this theorem at p = 1 can be seen through the action of S on the

Dirac delta distribution; in particular Sδ0 ' 1/|x|d. As usual, one must argue by
approximating δ0 with an approximate identity and using a limiting process. The
failure at p =∞ is a consequence of failure at p = 1 and duality.

5. The Ball Multiplier Theorem

It is a remarkable fact that the operator S given by

(5.1) Sf(x) =

∫
[|ξ|<1]

f̂(ξ)e2πix·ξ dξ,

initially defined on L2(Rd) ∩ Lp(Rd), is not bounded with respect to the Lp norm
for p 6= 2 and d > 1 (boundedness holds for d = 1 due to the boundedness of the
Hilbert Transform and for p = 2 due to Plancherel’s theorem). The operator S
corresponds to the Fourier multiplier χB(0,1), i.e. the ball multiplier. The proof of
this fact relies on the existence of so-called Kakeya sets of arbitrarily small measure.
These are subsets of the plane that contain a unit line segment in every direction.
We do not construct such sets here, and refer the reader to [2, p.433] to see a
detailed construction. Instead, we state the lemma we will need.
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Lemma 5.2. For any ε > 0, there exists an integer N ≥ 1 and 2N rectangles of
side lengths 1 and 2−N , denoted R1, . . . , R2N , such that

(5.3)

∣∣∣∣∣∣
2N⋃
j=1

Rj

∣∣∣∣∣∣ < ε,

and the translates of each Rj by 2 units in the positive direction along its longer
side, denoted R′j, are mutually disjoint. Therefore

(5.4)

∣∣∣∣∣∣
2N⋃
j=1

R′j

∣∣∣∣∣∣ = 1.

Here |·| denotes Lebesgue measure.

Note that the rectangles, which constitute a Kakeya set, have a high degree of
overlap, yet point in many different directions. We proceed in the proof of the ball
multiplier theorem by contradiction. Along with existence of small Kakeya sets,
the following lemma plays a key role.

Lemma 5.5. Suppose that the following bound holds for all f ∈ L2(Rd) ∩ Lp(Rd)
for some p with 1 ≤ p ≤ ∞:

(5.6) ‖Sf‖Lp ≤ Ap‖f‖Lp .

Let u1, . . . , uM be unit vectors in Rd for some fixed integer M . Then

(5.7)

∥∥∥∥∥∥∥
 M∑
j=1

∣∣Huj
(fj)

∣∣21/2
∥∥∥∥∥∥∥
Lp

≤ Ap

∥∥∥∥∥∥∥
 M∑
j=1

∣∣fj∣∣2
1/2

∥∥∥∥∥∥∥
Lp

where

Hu(f)(x) =

∫
[ξ·u>0]

f̂(ξ)e2πix·ξ dξ.

Proof. Let f = (f1, . . . , fM ) and let T (f) = (Tf1, . . . , T fM ) for any linear operator
T . Define the family of operators Tω by

(5.8) Tω(f) =

M∑
j=1

ωjT (fj)

where ω = (ωj)
M
j=1 ∈ Cm satisfies |ω| = 1. Similarly define

fω =

M∑
j=1

ωjfj .

Suppose that we have the bound (for p <∞)

(5.9)

∫
Rd

∣∣Tωf(x)
∣∣p dx ≤ App

∫
Rd

∣∣fω(x)
∣∣p dx.

Define φ(ω, u) =
〈
u/|u| , ω

〉
= (u/|u|) ·ω for u 6= 0 and φ(ω, 0) = 0. Clearly we have

(5.10)
∣∣Tωf(x)

∣∣ =
∣∣Tf(x)

∣∣∣∣φ(ω, Tf(x))
∣∣ =

 M∑
j=1

∣∣Tfj(x)
∣∣21/2∣∣φ(ω, Tf(x))

∣∣ .
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Define

γ(p, f, x) =

∫
[|ω|=1]

∣∣φ(ω, Tf(x))
∣∣p dω.

If Tf(x) 6= 0 then there exists a rotation Q such that

Q(Tf(x)/
∣∣Tf(x)

∣∣) = (1, 0, . . . , 0) = e1.

Since rotations preserve the Hermitian inner product and the resulting change of
variables preserves dω, we have

γ(p, f, x) =

∫
[|ω|=1]

∣∣φ(Qω, e1)
∣∣p dω =

∫
[|ω|=1]

∣∣φ(ω, e1)
∣∣p dω,

whence γ(p, f, x) = γp is independent of f and x and is nonzero. The case Tf(x) = 0
is immaterial in the proof.

We integrate (5.9) over {ω : |ω| = 1} before integrating in x. Using the indepen-
dence of γp from x and γp > 0, we conclude that

(5.11)

∥∥∥∥∥∥∥
 M∑
j=1

∣∣T (fj)
∣∣21/2

∥∥∥∥∥∥∥
Lp(Rd)

≤ Ap

∥∥∥∥∥∥∥
 M∑
j=1

∣∣fj∣∣2
1/2

∥∥∥∥∥∥∥
Lp(Rd)

Now let p =∞. If we assume in place of (5.9) the inequality

(5.12) ‖Tωf‖L∞ ≤ A∞‖fω‖L∞ ,
then taking ess sup|ω|=1 of both sides inside of the L∞ norm and noting ess sup

∣∣φ(ω, u)
∣∣ =

1 for all u gives (5.11) for p =∞.
We now show that (5.9) and (5.12) and therefore (5.11) hold for operators of

interest. Since Tω(f) = T (fω), any operator satisfying the bound (5.6) is such an
operator. For any set E ⊂ Rd define

SEf(x) =

∫
E

f̂(ξ)e2πix·ξ dξ.

The hypothesis (5.6) implies an identical bound for SB(0,R), where B(0, R) is the
ball of radius R centered at the origin, for any R > 0. Indeed, letting δR(g)(x) =
g(x/R), we have∥∥∥SB(0,R)f

∥∥∥
Lp

=
∥∥∥δ−1R SδRf

∥∥∥
Lp

= R−d‖SδRf‖Lp ≤ R−dAp‖δRf‖Lp = Ap‖f‖Lp .

Let u ∈ Rd be a unit vector. It is easy to verify

SB(Ru,R)f(x) = e2πiRu·xSB(0,r)(e
−2πiRu·xf),

in view of which

(5.13)

∥∥∥∥∥∥∥
 M∑
j=1

∣∣∣SB(Ru,R)(fj)
∣∣∣2
1/2

∥∥∥∥∥∥∥
Lp(Rd)

≤ Ap

∥∥∥∥∥∥∥
 M∑
j=1

∣∣fj∣∣2
1/2

∥∥∥∥∥∥∥
Lp(Rd)

.

As R→∞, the set B(Ru,R) increases to the half space {ξ : ξ · u > 0}. By mono-
tone convergence, we have SB(Ru,R) converges to Hu in L2, and so a subsequence
converges almost everywhere, whence (5.13) proves the lemma. �

We now formally state and prove the ball multiplier theorem.

Theorem 5.14. The operator S cannot be extended to a bounded operator on Lp.
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Proof. Consider the operator SR+ defined by

(SR+f)(x) =

∫ ∞
0

f̂(ξ)e2πixξ dξ

for f ∈ L2(R1). Put f = χ(−1/2,1/2). We have

(SR+f)(x) = lim
ε→0+

∫ ∞
0

f̂(ξ)e2πi(x+iε)ξ dξ.

We also have∫ ∞
0

f̂(ξ)e2πi(x+iε)ξ dξ =

∫ ∞
−∞

(∫ ∞
0

e−2πiyξe2πi(x+iε)ξ dξ

)
f(y) dy

=
1

2πi

∫ ∞
−∞

f(y)

(y − x− iε)
dy

where the change in integration order is justified by∫ ∞
0

∫ ∞
−∞

∣∣f(y)
∣∣ e−2πεξ dy dξ =

∫ ∞
0

e−2πεξ dξ <∞.

Let |x| > 1/2 and 0 < ε < 1/2. By the intermediate value theorem, we write∫ 1/2

−1/2

1

y − x− iε
dy =

1

c− x− iε

for some c with −1/2 ≤|c| ≤ 1/2, from which it follows

(5.15)
∣∣(SR+f)(x)

∣∣ ≥ C

|x|
, for |x| > 1/2.

We will use this bound along with the Kakeya construction to show a contradiction
in (5.7).

Set p < 2. Let f be the indicator function for the ball of radius 3 in Rd−2;
if n = 2 let f be the constant 1. Let R1, . . . , R2N be the rectangles constructed
by lemma 5.2. Note that if F (x1, x2) = f1(x1)f2(x2) and e1 is the unit vector
in the x1 direction, we have that (He1F )(x1, x2) = (SR+f1)(x1)f2(x2). Let uj,1
and uj,2 be unit vectors in the direction of the longest and shortest sides of Rj ,
respectively, and let uj,3 stand in for the remaining n − 2 coordinates. Define
fj(x1, x2, x3) = χRj

(x1, x2)f(x3) for j = 1, . . . , 2N , where x1, x2, x3 are coordinates
with respect to uj,1, uj,2, uj,3. We see

(5.16)

∣∣(Huj,1
fj)(x1, x2, x3)

∣∣ =
∣∣∣(SR+χ(−1/2,1/2))(x1)χ(−2−N−1,2−N−1)(x2)f(x3)

∣∣∣
≥ C

|x1|

∣∣∣χ(−2−N−1,2−N−1)(x2)f(x3)
∣∣∣

≥ c′χR′j (x1, x2)
∣∣f(x3)

∣∣
for some c′ > 0 (c′ = 2C/5 works), where R′j is the translate of Rj as defined in

lemma 5.2. Setting M = 2N and uj = uj,1, we compute that the left side of (5.7)
is larger than c′v(B3), where v(B3) is defined to be the volume of the ball of radius

3 in Rd−2 if d > 2 and is defined to be 1 if d = 2. This is because
∣∣∣∪jR′j∣∣∣ = 1
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and the R′j are disjoint. Applying Holder’s inequality with dual exponents 2/p and
q = 1/(1− p/2), we conclude that the right side of (5.7) is smaller than

(5.17) Ap

∫
Rd

 2N∑
j=1

∣∣χRj
(x1, x2)f(x3)

∣∣2 dx

(∫
∪jRj×B3

dx

)1/q

.

Note that, by our choice of p < 2 and since
∣∣∪jRj∣∣ can be made arbitrarily small

via lemma 5.2, the rightmost factor of (5.17) can be made arbitrarily small. And∫
Rd

 2N∑
j=1

∣∣χRj
(x1, x2)f(x3)

∣∣2dx = v(B3)

2N∑
j=1

∣∣Rj∣∣ = v(B3),

whence (5.17) can be made smaller than c′v(B3), contradicting (5.7). Since the Lp

boundedness of the ball multiplier, (5.6), implies (5.7), we have the theorem for
p < 2 and all d > 1.

We now extend the result to p > 2 by duality. Suppose that S is bounded as an
operator for some p > 2. Let p′ < 2 denote the dual exponent of p. Then, noting
that 〈Sf, g〉 = 〈f, Sg〉, we have

‖Sg‖Lp′ = sup
‖f‖Lp=1

〈f, Sg〉 = sup
‖f‖Lp=1

〈Sf, g〉 ≤ sup
‖f‖Lp=Ap

〈f, g〉 = Ap‖g‖Lp′ ,

contradicting the preceding result. Therefore S cannot be extended to a bounded
operator on Lp(Rd) for p 6= 2 and d > 1. �
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