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Abstract. Quantum computing has recently been the focus of much theoretical and exper-

imental research. The reason is the belief that, compared to classical computers, quantum

computers are able to solve a larger class of problems efficiently. One problem that quantum
computers can solve is prime factorization, especially important since current online security is

based on the conjecture that factoring large numbers is infeasible. This paper builds up to the

factoring algorithm, only assuming knowledge of basic functional analysis and linear algebra.
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Introduction

Near the end of the 1800s, physicists discovered phenomena unexplained by classical mechanics.
This eventually led to the creation of quantum mechanics as a new paradigm to describe the
physical world. Because computers are physical systems (indeed, the information that a machine
manipulates is encoded in a physical entity), a new paradigm of physics brings a new way to
think about computing as well.

Since computation is ultimately a physical process, it requires space, time, and energy. Given
a problem, we can describe its computational complexity by how much resource it needs. If
the resources required scales at most polynomially with respect to the input, we say that the
algorithm solving it is efficient. Otherwise, we say that the problem is infeasible. For example,
multiplication is efficient, but factoring is not; that is, it is exponentially harder to factor large
numbers than it is to multiply them. This forms basis of RSA encryption, the method we use to
securely send information online.

The interest in quantum computing stems partly from the belief that quantum algorithms
can efficiently solve a larger set of problems than classical algorithms. It is easily proved that
every classical algorithm has a quantum counterpart. And of course, there already exist quantum
algorithms solving problems beyond the reach of current classical computers, Shor’s algorithm
for prime factorization being one of these.

The goal of this paper is to understand the motivation and method of Shor’s algorithm.
This paper will be an excursion through quantum mechanics and quantum computing. We will
understand the quantum Fourier transform, which lies at the heart of the algorithm. Further,
we’ll cover discuss RSA encryption briefly to see where factorization comes in. Finally, we go
over the algorithm itself.
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1. Quantum Mechanics

In classical mechanics, every bit of information about a particle is encoded in its position and
momentum; if we know what outside forces has acted on the particle, then we can determine
where the particle was, where it will be, its acceleration, and so on.

We can therefore describe the state of a particle by these two quantities (p,q) representing
position and momentum. We call the set of all possible states the phase space associated to this
one-particle system.

To describe a mult-particle system, we can just look at the direct product of the phase spaces
of its constituent particles. Intuitively, this means that individual particles are independent of
each other. Multiple particles put together do not inherently limit the phase space.

Quantum mechanics, on the other hand, treats position and momentum as observables—
quantities that arise out of physical measurements on the system. However, the process of
measuring the system changes the system. Furthermore, multi-particle systems, or joint systems,
are not simply a direct product of an underlying state space. Unlike in classical mechanics, two
quantum systems can become entangled.

The differences between classical mechanics and quantum mechanics lead to fundamentally
different ways we can think about computation using a physical machine.1 Before we see how
quantum mechanics lead to new ways of computing, first, we will build up quantum mechanics
from four postulates. These postulates deal with (1) what structures the space has, (2) how
measurements are performed, and (3) how multiple systems interact to form a joint system.

1.1. State space. In classical mechanics, we have the phase space. Quantum has a state space.

Postulate 1. The state space is the set S of all possible states of a physical system. It is assumed
to be a subset of a complex, separable Hilbert space H. The possible states themselves are called
state vectors or wavefunctions, and these must be unit vectors.

We denote unit vectors by |ψ〉. Remember that |ψ〉 does not represent a particle’s position or
momentum, but we can perform measurements |ψ〉 that give rise to quantities such as position,
momentum, energy, spin, and so on.

A Hilbert space is a complete inner product space. As a bit of notation, the inner product onH
is denoted by 〈φ |ψ〉, where |φ〉 , |ψ〉 ∈ H. This is a useful notation because Riesz representation
theorem then tells us that we can naturally represent the dual vectors as 〈φ| ∈ H∗, with

〈φ| |ψ〉 := 〈φ |ψ〉.
Furthermore, this gives us an easy way to construct projection operators. We can project onto
the vector |φ〉 using the operator |φ〉〈φ|, where the operator is defined as

|φ〉〈φ| |ψ〉 := |φ〉 〈φ|ψ〉.
Here, we scale |φ〉 by the inner product of |φ〉 and |ψ〉. Remember that |φ〉 is unit, so this is in
fact a projection onto |φ〉. And, if the set of vectors |φn〉 are orthogonal, where 0 ≤ n ≤ N ≤ ∞,
then we can project onto the subspace spanned by those vectors by the operator

N∑
n=0

|φn〉〈φn| .

It is also easy to prove that if the set of vectors |φn〉 is an orthonormal basis, then the above
operator is just the identity, which is the projection onto the whole space. Now that we have the
notation, we can discuss a bit about dynamics of the space.

In classical mechanics, the state of a particle (p(t),q(t)) evolves according to Newton’s laws.
To describe how quantum states change |ψ(t)〉, we have Schrödinger’s equation. This results in

|ψ(t)〉 = U(t) |ψ0〉 ,

1A natural question here is if classical mechanics does not accurately describe the physical world, why do
current computers work? That’s because classical mechanics is a good approximation up until we get to very

small scales, when quantum effects take over.
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where U(t) turns out to be a unitary operator. This makes sense because |ψ0〉 and |ψ(t)〉 are
both unit vectors. And indeed, quantum computers manipulate information through unitary
operators.

Example 1.1. As an example of a quantum system, consider the one-dimensional particle in
a box. Physically, this is a particle confined to a one-dimensional space of unit length, with no
outside forces acting on it. The associated Hilbert space is L2([0, 1]), the space of complex-valued
square-integrable functions over the domain [0, 1]. The state space is the set of unit vectors in
L2([0, 1]), which are measurable functions such that∫ 1

0

|f |2 dx = 1.

An example of a state vector or a wavefunction is the function fn : [0, 1] −→ C defined by

|n〉 ≡ fn(x) =
√

2 sin (nπx) .

At this point, we should not try to ascribe a physical meaning to fn(x); it will be more productive
for us to think of |n〉 as a vector in L2 than explicitly as a function.

1.2. Observables. An observable of a system is a property of the system derived from a physical
measurement on the system. Examples of observables are position, momentum, energy, or spin.

Take the spin of an electron, for example. Upon being measured, an electron will always either
be spin up or spin down. Notice something tricky here: we measure spin up or spin down, but
also, after measuring, the state of the electron is also either spin up or spin down.

What does it mean that the state of the electron is spin up/down? Did we not just refuse
to give state vectors such as |n〉 a physical meaning? To illuminate this, we should think about
observables in the following way.

There is a fundamental limit to our ability to discern two different state vectors. In particular,
we can only distinguish orthogonal state vectors. Suppose |0〉 and |1〉 are orthogonal in a two-
dimensional Hilbert space. Then, we can always tell the two vectors apart by some observable
characteristic. We can call |0〉 having spin up, while |1〉 having spin down.

But what about some state vector |ψ〉 in between (more precisely, what if |ψ〉 is a linear
combination of |0〉 and |1〉)? What spin does it have? We can only measure spin up or spin
down; there is no spin sideways. The measurement is probabilistic. In particular, we measure
spin up with probability |〈0 |ψ〉|2, and spin down with probability |〈1 |ψ〉|2.

Notice that |0〉 and |1〉 form an orthonormal basis, and since the magnitude of |ψ〉 is 1, the
probabilities sum to 1 (Pythagorean’s theorem). In fact, from above, we know that |0〉〈0|+ |1〉〈1|
is the identity operator. This is consistent, implying that upon measuring the spin of |ψ〉, we
always get either up or down.

But we also mentioned that the state is transformed upon measurement. If we measure spin up,
then the state of the electron following the measurement is |0〉. If we think about the assumption
that there is only two distinguishable spin states, we see that measurement of the system cannot
preserve it. Otherwise, we could repeatedly measure it, and with arbitrary precision determine
〈0 |ψ〉 and 〈1 |ψ〉, distinguishing more states.

So, we can think of |ψ〉 as a superposition of the up and down states, and measuring the state
collapses it into one of the ‘canonical’ states. This in short is Schrödinger’s cat: a machine puts
a cat into the superposition of its live and dead state. Until we measure the cat, it is neither
dead nor alive. However, when we do look at the cat, it will necessarily be dead or alive. We can
formalize this into the following postulate:

Postulate 2. Observables are associated with Hermitian operators on H. The eigenvalues of
the operator comprise the possible values obtained from measuring the system. Let the set of
eigenvectors be denoted by |1〉 , |2〉 , . . . , and let the associated eigenvalues be a1, a2, . . . . Let |ψ〉
denote the state of the system. The probability of measuring ak is |〈k |ψ〉|2. Upon being measured,
the state of the system collapses onto |k〉.
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Note a few points here. First, A is Hermitian, so its eigenvalues are real; they can correspond
to physical quantities. Second, since we are working in a separable Hilbert space, there is a
countable orthonormal basis (justifying our use of the naturals as indices). Third, we can expand
|ψ〉 out in the eigenbasis, obtaining

|ψ〉 =
∑
k

ck |k〉 .

Then, the probability of measuring ak is |ck|2. Finally, in our postulate, we made a simplying
assumption that the aj ’s are unique. However, this is not necessarily the case. If aj = ak, then
the probability of measuring aj is |cj |2 + |ck|2, and the state vector |ψ〉 is projected onto the
subspace spanned by |j〉 and |k〉. In fact, if we consider the extreme case of the identity operator
(all of its eigenvalues are 1), then we will measure 1 with probability 1, and the measurement
projects the vector |ψ〉 back onto the whole space (i.e. nothing happens to the system, but we
also gained no information about the system).

Example 1.2. Let’s return to the particle-in-a-box example: we’ll measure the energy of the
system. Energy is associated to the Hamiltonian operator. Here, it takes the form

H |ψ〉 = − }2

2m

d2

dx
ψ(x).

where } and m are constants. It’s easy to see that the set of vectors |n〉 for n ∈ N are all in fact
eigenvectors of H, and that the associated eigenvalue to |n〉 is

En =
n2}2π2

2m
.

Now, let |ψ〉 be a general state of the particle in a box, described as

|ψ〉 =
∑
k

ck |k〉 .

Suppose we have some device that can measure the energy level of the particle. With probability
|cn|2 we measure En.2 Furthermore, when we measure the system, the system ‘collapses’ onto
the subspace defined by the eigenvalue En. That is, after the measurement, the state of the
system is |n〉, the only eigenvector with eigenvalue En.

The last example dealt with an infinite-dimensional Hilbert space. We should formalize finite-
dimensional spaces. We already saw a finite-dimension example, with the electron spin (a.k.a.
Schrödinger’s cat). In fact, this is the building block of quantum computing.

Example 1.3. We call a quantum system whose associated Hilbert space is 2-dimensional a
two-level quantum system. Recall this means that any measurement we perform on the system
can take on at most two values (since we have at most two orthogonal vectors).

Label the two basis states |0〉 and |1〉. In general, the state of the electron is a linear combi-
nation

|ψ〉 = c0 |0〉+ c1 |1〉 ,
where |c0|2 + |c1|2 = 1 to ensure |ψ〉 is unit.

For concreteness, let’s assume we are dealing with electron spin. Let’s try to determine the
form of the observable that tells us whether the quantum system has spin up, associated to its
eigenvector |0〉. This means that our observable has eigenvectors |0〉 and |1〉. Let the value 1
denote yes, and 0 for no. In a purely abstract sense, we are looking for a linear operator whose
eigenvectors are |0〉 and |1〉 and their respective eigenvalues are 1 and 0.

We easily see that the projection onto |0〉 satisfies these conditions

A ≡ |0〉〈0| .

2We implicitly suggest that the vectors |n〉 from the particle-in-a-box form an orthonormal eigenbasis on
L2([0, 1]). This is not strictly true, since these wavefunctions consist only of sines. However, Schrödinger’s

equation impose other conditions on the state space, and it turns out that these vectors span that space.
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So, if we let c0, c1 = 1/
√

2, we see that the probability of measuring spin up is |c0|2 = 1/2. Thus,
half of the time, we measure that the particle is in state |0〉, and other half it is in state |1〉. But
suppose that we measure that the particle is in state |0〉. Then, the state of the system becomes
|0〉, and any further measurements will yield |0〉 with probability 1.

Definition 1.4. In quantum computing, a two-level quantum system is called a quantum bit or
qubit, analogous to the classical computing bit.

The bit describes a system with two states, 0 and 1. The qubit on the other hand can
be in an infinite number of states, formed from the superposition of |0〉 and |1〉. If we could
easily produce and access every state, then we could theoretically encode an infinite amount of
information into a single qubit. However, by measuring it once, the wavefunction collapses onto
a subspace, meaning we would need an arbitrarily large number of identical quantum systems
for high precision.

Instead of trying to encode a large amount of information into a single qubit, we can also
combine qubits together. A last postulate in quantum mechanics tells how quantum systems
combine.

1.3. Entanglement. In classical mechanics, the phase space that describes a multi-particle sys-
tem is the Cartesian product of the individual phase spaces; the degrees of freedom are summed.
Quantum mechanics is different, where the degrees of freedom are multiplied. We will see that a
consequence of this in quantum computing is the increased computing power.

Postulate 3. Let H1 and H2 be the state space corresponding to two quantum systems. Their
joint quantum system, that is, the space that describes how these two quantum systems interact,
is the tensor product of the two subspaces H = H1 ⊗H2.

We can characterize H1 ⊗H2 by the following proposition:

Proposition 1.5. Let H1 and H2 be separable Hilbert spaces. Let {φk} and {ψ`} be bases on
H1 and H2, respectively. Then {φk ⊗ ψ`} is a basis H1 ⊗H2.

Proof. Clearly, the set {φk ⊗ ψ`} is orthonormal. We just need to show that φ ⊗ ψ ∈ H is
contained in the span of {φk ⊗ ψ`}. Since {φk} and {ψ`} are bases, we can write φ and ψ as
linear combinations

φ =
∑

ckφk ψ =
∑

d`ψ`.

This implies that
∑
|ck|2 <∞ and

∑
|d`|2 <∞. Thus,

∑
|ckd`|2 <∞. Hence,

µ =
∑

ckd`φk ⊗ ψ`
is an element of H1 ⊗H2, and ∥∥∥φ⊗ ψ −∑ ckd`φk ⊗ ψ`

∥∥∥ −→ 0.

This proves that {φk ⊗ ψ`} is a basis of H1 ⊗H2. ♦
We can give some intuition why joint systems are described by tensor products by example.

Example 1.6. Let’s describe two particles in R3. The state space to describe each particle is
L2(R3, dµ).3 The state space of the joint system is L2(R3 × R3, dµ1 ⊗ dµ2), where dµ1 ⊗ dµ2

is naturally the usual measure on the product space.4 We claim that this space is isomorphic to
L2(R3, dµ1)⊗ L2(R3, dµ2). First, we find an orthonormal basis.

Let {φk(x)} and {ψ`(y)} be orthonormal bases on L2(R3, dµ1) and L2(R3, dµ2), respectively.
By Fubini’s theorem, the set {φk(x)ψ`(y)} is orthonormal. To show that this set spans, suppose
there is some f(x, y) ∈ L2(R3 × R3) orthogonal to all elements in this set. That is,∫∫

R3×R3

f(x, y)φk(x)ψ`(y) dµ1 ⊗ dµ2 = 0

3The measure µ is the usual measure in L2; we include for clarity later.
4More precisely, it is the unique measure on R3×R3 such that (µ1⊗µ2)(S×T ) = µ1(S)µ2(T ), where S, T ⊂ R3.
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for all k, `. By Fubini’s theorem, we can rewrite this as a double integral∫
R3

[∫
R3

f(x, y)φk(x) dµ1

]
ψ`(y) dµ2 = 0.

As {ψ`} is a basis on L2(R3, dµ2), this implies that
∫
R3 f(x, y)φk(x) dµ1 is zero almost every-

where, for y ∈ R3. Restricted to the points for which the integral is zero, we have that f(x, y) = 0
almost everywhere for x ∈ R3. And so, f(x, y) = 0 almost everywhere for (x, y) ∈ R3×R3, prov-
ing that {φkψ`} is a basis.

Next, we can define the isomorphism. Let U : L2(R3)⊗L2(R3) −→ L2(R3×R3) map φk ⊗ψ`
to φkψ`; it extends uniquely to the rest of the space. In fact,

U(f ⊗ g) = U
(∑

ckφk ⊗
∑

d`ψ`

)
= U

(∑
ckd`φk ⊗ ψ`

)
=
∑

ckd`φkψ` = f(x)g(y).

Thus, these two spaces are naturally isomorphic.

The physical consequences of the tensor product is quantum entanglement, where the state of
a particle cannot be described independently of the whole system. Mathematically, we define:

Definition 1.7. Let |ψ〉 ∈ H be a state in a joint quantum system, where H = H1 ⊗ H2. We
say that |ψ〉 is a separable state if it can be written as a tensor product of vectors in H1 and H2.
That is, |ψ〉 is separable if there exist |α〉 ∈ H1 and |β〉 ∈ H2 such that

|ψ〉 = |α〉 ⊗ |β〉 .

Otherwise, |ψ〉 is an entangled state.

Example 1.8. Consider the following canonical example of entanglement. Take a two qubit
system. The basis for each of the two qubits is {|0〉 , |1〉}. For brevity, we’ll denote the vec-
tor |j〉 ⊗ |k〉 by |jk〉. So, Propositon 1.5 tells us that a basis on the joint system is given by
|00〉 , |01〉 , |10〉 , |11〉.

Consider the ‘Bell state’ |ψ〉 defined by:

|ψ〉 =
1√
2
|00〉+

1√
2
|11〉 .

Suppose we want to measure the state of the first particle, so we produce a detector that tells us
whether it is in state |0〉 or |1〉. Let the observable A give us the value 1 when the first particle
is in |0〉 and 0 otherwise. Then, in matrix form, we can represent A by:

A =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,
where we order the basis vectors as above. That way,the eigenvalue 1 is associated with the
eigenvectors |00〉 and |01〉. These are precisely the vectors whose first particles are in the state
|0〉. From the representation of |ψ〉 above, we see that we will see that the first particle is in

state |0〉 with probability 1/2 =
∣∣1/√2

∣∣2. Suppose we find that the first particle is in state |0〉.
Then, |ψ〉 is projected onto the subspace spanned by |00〉 and |01〉, so after this measurement,
the state |ψ〉 becomes |00〉. If we then want to measure the state of the second particle, we will
obtain, with probability 1, that it is in state |0〉 as well. However, before we measured the state
of the first particle, we would have found that the second particle is in state |0〉 half of the time.

This example shows physical effects of entanglement: the act of measuring the first particle
changes the nature of the second particle as well. This clearly differs from classical intuition,
where measuring the first particle should have no effect on the second. But it is entanglement,
along with superposition, that adds possibilities to quantum computing that have no analogies
in classical computing.
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2. Quantum Computing

Let’s return to the qubit, a two-level quantum system H, with basis |0〉 and |1〉. In practice,
such a system might be realized based on nuclear spin or light polarization, for example. But for
a two-level quantum system to be able to be used in a quantum computer, it must have at least
the following properties: we can measure the basis states, prepare the system in a well-defined
initial state, and perform any unitary operation on the system.

2.1. Bloch sphere. Recall that a general quantum state can be written as:

|ψ〉 = c0 |0〉+ c1 |1〉 ,

where |c0|2 + |c1|2 = 1. Furthermore, if |ψ2〉 = eiγ |ψ1〉, no measurement we can perform will
differentiate the two states. So, the space of quantum states we can distinguish is a quotient
space of the unit sphere in C2 with respect to the equivalence relation |ψ1〉 ∼ |ψ2〉 if the above
relation holds. Another way we can visualize this space is by first writing out the general state:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 ,

where θ ∈ [0, π] and φ ∈ [0, 2π]. Notice that we can assume that the first coefficient is always
nonnegative since the overall phase cannot be physically determined. The associated vector:

(cosφ sin θ, sinφ sin θ, cos θ)

is called the Bloch vector. Therefore, we can associate to every quantum state a point on the
2-sphere in R3. Then, |0〉 corresponds to the point (0, 0, 1) and |1〉 to (0, 0,−1). This is a
particularly useful representation because we will soon see that unitary operations correspond to
rotations of the sphere.

2.2. Unitary operators. For concreteness, we will use matrix representations of operators. So,
we associate to the column vectors the states:

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
.

As an example, the Hadamard gate is the unitary operator represented by the matrix:

H =
1√
2

[
1 1
1 −1

]
.

Other important operators are the Pauli matrices:

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
.

From the Pauli matrices, we can define a class of rotation matrices by:

Rx̂(ξ) = e−iξX/2 =

[
cos ξ2 −i sin ξ

2

−i sin ξ
2 cos ξ2

]
Rŷ(ξ) = e−iξY/2 =

[
cos ξ2 − sin ξ

2

sin ξ
2 cos ξ2

]
Rẑ(ξ) = e−iξZ/2 =

[
e−iξ/2 0

0 eiξ/2

]
We call these rotation matrices because they rotate the Bloch sphere about the x, y, or z-axes.
To see this, we can first calculate the eigenvalues and eigenvectors of X, Y , and Z. For example,
the eigenvalues of Z are ±1, with eigenvectors:

v0 =

[
1
0

]
v1 =

[
0
1

]
.
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As above, these vectors correspond to the Bloch vectors (0, 0,±1). Notice that if A is an operator
such that A2 = I, then:

e−iξA =

[
1− 1

2!
ξ2 + · · ·

]
I − i

[
ξ − 1

3!
ξ3 + · · ·

]
A = cos(ξ)I − i sin(ξ)A,

where ξ is a real number. Since X2 = Y 2 = Z2 = I, we can expand eiξA/2 as such. This means
that vectors v0,1 are eigenvectors of Rẑ(ξ), with eigenvalue cos ξ2 ∓ i sin ξ

2 = e∓iξ/2. So, for a
general state vector, we get that:

Rẑ(ξ)

[
c0
c1

]
= e−iξ/2c0

[
1
0

]
+ eiξ/2c1

[
0
1

]
∼ c0

[
1
0

]
+ eiξc1

[
0
1

]
,

where the two vectors are equivalent modulo an overall phase of e−iξ/2. In fact, it is easy to see
that the Bloch vector transformation is:

(cosφ sin θ, sinφ sin θ, cos θ)
Rz(ξ)7−→ (cosµ sin θ, sinµ sin θ, cos θ),

where µ = φ+ ξ; indeed Rẑ(ξ), a rotation by ξ about the z-axis.
Of course, we didn’t need to go through all this work to find the eigenvalues and eigenvectors

of Rẑ(ξ); just look at its matrix form. But, we can apply the same technique for Rx̂ and Rŷ. In
fact, this technique allows us to look at the general rotation Rn̂(ξ), where n̂ = (nx, ny, nz) is any
vector on the Bloch sphere, and:

Rn̂(ξ) =

(
cos

ξ

2
I − i sin

ξ

2

)
(nxX + nyY + nzZ) .

In short, we have the following proposition:

Proposition 2.1. Let Rn̂(ξ) as above, and ψ̂ be the state of a qubit as represented on the Bloch

sphere. Then, Rn̂(ξ)ψ̂ is obtained by rotating ψ̂ about n̂ by an angle ξ.

Theorem 2.2. Let U be an arbitrary unitary operation on a qubit. Then, it can be written as:

U = eiαRn̂(ξ),

where α, ξ ∈ R and n̂ a vector on the Bloch sphere.

We won’t present the proof here because it is not very enlightening, but it is based on the fact
that the set {I,X, Y, Z} forms an orthogonal basis on the space of 2× 2 complex matrices. [GL,
p.119] Ultimately, the unitary condition along with some algebra leads to the conclusion that U
can be expanded as:

U = eiα
[
cos

ξ

2
I − i sin

ξ

2
(nxX + nyY + nzZ)

]
= eiαRn̂(ξ).

We can represent the operations using a circuit diagram. Below are the representation of
certain gates:

H X Y Z U

Figure 1. The Hadamard gate, the Pauli gates, and an arbitrary gate.

The qubit is input on the left, the gate acts on the qubit, and the output is on the right. Of
course, we can string together operations. For example, if we wanted to apply the Hadamard
gate then the rotation about n̂ by ξ, we could have:

H Rn̂(ξ)

Figure 2. The Hadamard gate followed by a rotation.
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2.3. Control gates. In the previous section, we looked at operations we can do to single qubits.
We’ll now look at controlled operations: if A then B. In such a system, there is a control qubit
and a target qubit. The state of the control qubit determines whether a unitary operation is
performed on the target qubit. For example, we’ll consider the controlled -not (cnot) gate.
Here, if the control qubit is a 1, then the target qubit is flipped. To write this out in matrix
form, recall the computational basis: {|00〉 , |01〉 , |10〉 , |11〉}, as above. Then, we have:

cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
In a circuit diagram, we represent the control qubit by a solid dot. The not gate itself is an
open circle. The cnot gate is:

•

Figure 3. A cnot gate. The top qubit controls the lower qubit.

If U is a unitary operator that acts on a qubit, we can turn it into a controlled-U gate, where
it acts on the second qubit depending on the state of the first qubit. We represent a controlled-U
gate by:

•

U

Figure 4. A controlled-U gate. The top qubit controls the lower qubit.

Controlled gates are important because they can generate entangled states. For example, take
cnot and the state

|ψ〉 = (a |0〉+ b |1〉)⊗ |0〉 .
Applying cnot to the gate produces the entangled state

cnot |ψ〉 = a |00〉+ b |11〉 .

Entangling qubits is a fundamental component of quantum computing; perhaps when it is too
difficult to work with the information directly, we can couple it to other bits of information that
are easier to work with. But instead of trying to convey the spirit in which entanglement is used,
let’s look at the quantum Fourier transform, which relies on entanglement.

2.4. Discrete Fourier transform. The quantum Fourier transform (QFT) is an important
component to many quantum algorithms, including Shor’s algorithm. In this section, we will go
over the classical discrete Fourier transform (DFT), which we can think of as a unitary operator
on the complex space Cn. Because of this, we can implement the Fourier transform in a quantum
computer. Those familiar with this result can move on to the next section.

The discrete Fourier transform is concerned with n-periodic functions f : Z −→ C. We can
think of n-periodic functions as functions f : [n] −→ C, where [n] = {1, . . . , n}. In other words,
f ∈ Cn. Of course, Cn is a complete inner product space, with the usual inner product

〈f, g〉 :=

n−1∑
k=0

fk · gk.
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So, this space admits an orthonormal basis. This is unsurprising, since we have the standard
basis on Cn. The basis important for the DFT is the set of vectors {ek} defined component-wise

ejk :=
1√
n
e−(2πi/n)jk

A straightforward computation proves that this set of vectors form an orthonormal basis. The
discrete Fourier transform is then just the change from the standard basis to this Fourier basis.

That is, the function f is mapped to f̂ , where

f̂(k) = 〈ek, f〉 =
1√
n

n−1∑
j=0

e(2πi/n)jk · f(j) =
1√
n

n−1∑
j=0

ωjkn f(j),

where ωn = exp(2πi/n) is the primitive nth root of unity. A standard result from linear al-
gebra is that such change of basis transformations are unitary. In fact, we can represent this
transformation with the matrix

F =
1√
n


ω0·0
n · · · ω

0·(n−1)
n

...
. . .

...

ω
(n−1)·0
n · · · ωn·nn


And, the inverse transform is given by the matrix F−1 = F ∗.

2.5. Quantum Fourier transform. The quantum version of DFT applies precisely the same
transformation onto the state vector |ψ〉 =

∑n−1
k=0 ck |k〉 to get

F |ψ〉 =
1√
n

n−1∑
j=0

n−1∑
k=0

ωjkn ck |j〉 ,

where ωn is the primitive nth root of unity, as above.
As an example, consider a N -qubit system; the dimension of the state space is therefore 2N ,

with the basis vectors |j〉 where j = 0, . . . , 2N − 1. It will be useful to be able to represent |j〉
with its binary representation, |j1, . . . , jN 〉, where jk = 0, 1, so we will use these two notations
interchangeably.

First, for concreteness, let’s calculate F |0, . . . , 0〉. Since |0, . . . , 0〉 = |0〉 is the 0th basis vector,
F applied to |0〉 corresponds to the 0th column of F . But ωk·0n = 1, so F |0〉 is just

F |0, . . . , 0〉 =
1√
n

n−1∑
j=0

|j〉 ,

where n = 2N .
It turns out that we can represent the Fourier transform in a different way, based on the binary

representation. Let’s expand F |j〉 out in another way. Recall that k =
∑N
`=1 k`2

N−`. So

F |j〉 =
1√
n

n−1∑
k=0

e2πi/n·jk |k〉

=
1

2N/2

1∑
k1=0

· · ·
1∑

kN=0

e2πij·(
∑N

`=1 k`2
N−`/n) |k1, . . . , kN 〉 .
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Since n = 2N , we have 2N−`/n = 2−`

F |j〉 = =
1

2N/2

1∑
k1=0

· · ·
1∑

kN=0

N⊗
`=1

e2πijk`2
−`

|k`〉

=
1

2N/2

N⊗
l=1

[
1∑

k`=0

e2πijk`2
−`

|k`〉

]

=
1

2N/2

N⊗
`=1

[
|0〉+ e2πij2

−`

|1〉
]

Finally, notice that j2−` can be written as a sum of its integral and fractional parts

j2` = [j1 · · · jN−`] + [0.jN−`+1 · · · jN ]

Therefore, we see that

F |j〉 =
1

2N/2

(
|0〉+ e2πi[0.jN ] |1〉

)(
|0〉+ e2πi[0.jN−1jN ] |1〉

)
· · ·
(
|0〉+ e2πi[0.j1...jN ] |1〉

)
(1)

This way of representing the Fourier transform gives us a way to build the corresponding quantum
circuit. Consider the first qubit of F |j〉

|j1〉 7→
1√
2

(
|0〉+ e2πi[0.jN ] |1〉

)
.

Notice that this is just the Hadamard operator acting on the nth qubit, |jn〉, since jn = 0
corresponds to e2πi[0.0] = 1, and jn = 1 corresponds to e2πi[0.1] = −1, remembering that [0.1] is
binary for 1/2.

Now, look at the second qubit of F |j〉, with

|j2〉 7→
1

2

(
|0〉+ e2πi[0.jN−1jN ] |1〉

)
.

By the same analysis as before, we can create the state vector 1√
2

(
|0〉+ e2πi[0.jN−1] |1〉

)
by ap-

plying the Hadamard operator on |jN−1〉. But we are off by a phase of e2πi/2
2

if jN = 1. In

order to obtain the correct vector, we need to apply a phase shift of e2πi/2
2

only when jN = 1.
This is just the controlled-phase shift operator R2 where Rk is defined as

Rk =

[
1 0

0 e2πi/2
k

]
.

Continuing this pattern, it’s not too difficult to see that the circuit for the Fourier transform
consists of Hadamard gates followed by controlled-phase shift gates, as diagrammed in Figure 5.

|j1〉 H R2 · · · RN−1 RN F |j〉N

|j2〉 • · · · H · · · RN−2 RN−1 · · · F |j〉N−1

...
. . .

|jN−1〉 • • · · · H R2 F |j〉2

|jN 〉 • • · · · • H F |j〉1

Figure 5. Quantum circuit for the Fourier transform.
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Notice in the circuit diagram that, as shown, the output qubits are in reverse order. However,
this is no problem, since the relabeling of qubits is itself a unitary operator

swap =

[
0 1
1 0

]
.

This circuit computes the Fourier transform of 2n elements using O(n2) gates. The fast Fourier
transform algorithms we have for classical computers would compute 2n elements using on the
order of O(n2n) gates; one uses exponentially more resource. On the other hand, quantum
mechanics provide limitations of preparing the input state or measuring the output phases.
Despite this, QFT still is an important component to many quantum algorithms. In particular,
we will look at Shor’s algorithm for prime factorization.

But before we discuss Shor’s algorithm, we will go over RSA encryption in order to gain the
necessary number theory and motivation to solve prime factorization efficiently.

3. RSA Encryption

RSA is a major method used to send encrypted messages between two previously noncommu-
nicating parties, while allowing confidentiality and authentication. It is based on the asymmetry
of computational power required to multiply and factor numbers. With classical computers, it is
essentially impossible to factor large numbers efficiently, but easy to multiply and exponentiate.

3.1. Number theory. Here, we cover some basic number theory required to understand RSA
encryption. We begin with when division is allowed in modular arithmetic:

Lemma 3.1. Let a, b, c, n ∈ Z, n 6= 0, and gcd(a, n) = 1. If ab ≡ ac (modn), then b ≡ c (modn).

Proof. Since a and n are relatively prime, there exist integers x, y such that ax + ny = 1.
Multiplying through by (b− c), we get that

(ab− ac)x+ n(b− c)y = b− c.
Since (ab− ac) ≡ 0 (modn) by assumption and n(b− c)y ≡ 0 (modn), this implies that b− c is
congruent to 0 (modn). In other words, b ≡ c (modn). ♦

Theorem 3.2 (Euler’s Theorem). Let φ(n) be the number of integers relatively prime to n
between 1 and n. If gcd(a, n) = 1, then aφ(n) ≡ 1 (modn).

Proof. Let S be the set of integers between 1 and n that are relatively prime to n, so that S
contains φ(n) elements. We claim that

{ax (modn) : x ∈ S} = S.

In other words, the function x 7→ ax (modn) is a permutation of the set S. Let x, y ∈ S such that
ax ≡ ay (modn). Since gcd(a, n) = 1, the above lemma tells us that x ≡ y (modn), implying
x = y. Second, ax (modn) ∈ S since a and x are both relatively prime to n, so their product is
also relatively prime to n. This proves our claim. Then, consider the product∏

x∈S
ax ≡

∏
x∈S

x (modn) .

Since each x in S is relatively prime to n, we can divide through by x. We find that∏
x∈S

a = aφ(n) ≡ 1 (modn) ,

proving the theorem. ♦
This theorem tells us that when we work with numbers in mod n, we want to work with their

exponentials in mod φ(n). That is, if x = y+kφ(n), where x, y, k are integers, and gcd(a, n) = 1,
then

ax (modn) = ay+kφ(n) (modn) = ay · akφ(n) (modn) = ay ·
(
aφ(n)

)k
(modn) ≡ ay (modn) ,

since aφ(n) ≡ 1 (modn).
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3.2. RSA algorithm. Suppose Alice needs to send a confidential message to David, but they
have not established a prior key. So, David picks two large distinct primes p, q. Let n = pq. Alice
and David will both work in mod n. Thus, David will need to be able to work in mod φ(n) as
well. Since p and q are prime, φ(n) = (p− 1)(q− 1). David also chooses an encryption exponent
e such that

gcd(e, φ(n)) = 1.

Since e and φ(n) are relatively prime, David can also find a decryption exponent d such that
de ≡ 1 (modφ(n)). Then, he makes available to the public the pair (n, e).

Alice takes her message m (we assume that m < n, otherwise we could break up the message
into smaller pieces), and sends back to David c, where

c ≡ me (modn) .

David can raise c by the decryption exponent, and determine m, since

cd ≡ mde (modn) ≡ m1 (modφ(n)) (modn) = m.

This algorithm is computationally efficient but secure because (1) it is easy to compute
m2 (modn), and (2) it is difficult to determine p, q from n (so one cannot easily determine
d). We now discuss these points in more detail.

3.3. Exponentiation and factoring. Suppose that we want to compute ab (modn). We con-

sider b in binary. We then need to compute a2
k

(modn). Then, ab (modn) is just the product

of at most log2 b integers less than n. Furthermore, in calculating a2
k

(modn), we never need to
work with numbers greater than n2. In short, calculating exponents can be computed quickly
with limited memory.

On the other hand, we assume that it is impossible to factor n efficiently. However, notice
that to decrypt the message, we only need d, the decryption exponent. We claim that finding
φ(n) or finding d is equivalent to factoring n in terms of complexity.

First, suppose that we know n and φ(n). Then, we easily find p and q since n−φ(n)+1 = p+q.
We claim that if we know p+q and pq, then we can find p and q. Indeed, we consider the quadratic

(x− p)(x− q) = x2 − (p+ q)x+ pq.

So, the quadratic equation gives us p and q from p+ q and pq.
Second, suppose we know d and e. We will show that if we have a universal exponent b > 0

such that ab ≡ 1 (modn) for all a relatively prime to n, then we can probably factor n. Since
de− 1 is a multiple of φ(n), then for any a such that gcd(a, n) = 1, then

ade−1 ≡
(
aφ(n)

)k
≡ 1 (modn) .

In both cases, since it is easy to factor n after determining φ(n) or d, and because factoring is a
computationally difficult problem, it is difficult to determine either φ(n) or d. Finally, let’s get
to Shor’s algorithm.

4. Shor’s Algorithm

Let n = pq be a product of two primes. Let x be a nontrivial square root of 1 modulo n

x2 ≡ 1 (modn) , x 6≡ ±1 (modn) .

These conditions tell us that 1 < x < n− 1 and x2 − 1 = (x+ 1)(x− 1) ≡ 0 (modn). Consider
the greatest common divisors

gcd(x+ 1, n) gcd(x− 1, n).

At least one of these must be a nontrivial factor of n since 1 < x < n−1. Shor’s algorithm prime
factorizes by finding such an x. The algorithm follows

1. Choose a random integer a < n. If gcd(a, n) 6= 1, then we have stumbled upon a
nontrivial factor of n. Otherwise,
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2. Find the period r of the function f(k) = ak (modn). In other words, we want ar to be
the identity, with ar ≡ 1 (modn).

3. Notice that if r is even, we let x = ar/2. And if x satisfies x 6≡ ±1 (modn), then we can
find nontrivial factors of n.

A few questions are immediately obvious: (i) does r exist for all a, (ii) is r always even, and
(iii) when will x 6≡ ±1 (modn)? Once we answer these questions using a bit of group theory, we
will discuss how to find the period of a function, and it is this step that will require a quantum
computer.

4.1. Groups and periods. First, we will consider periods on Z/pZ, and the Chinese remainder
theorem will help us generalize to Z/nZ. Recall that multiplicative group (Z/pZ)×, the group of
all congruence classes relatively prime to p, is a cyclic group; that is, there is some g ∈ (Z/pZ)×

that generates the group. Thus, for every a ∈ (Z/pZ)×, we can write

a ≡ gk (mod p) .

Euler’s theorem tells us that ap−1 ≡ 1 (mod p). So, there exists a smallest integer r such that
ar ≡ 1 (mod p). This value is also called the order of a.

Lemma 4.1. Let p be an odd prime and a ∈ (Z/pZ)× be chosen uniformly at random. With
probability 1/2, the order of a is even.

Proof. Since a = gk is chosen uniformly at random, where 1 ≤ k ≤ p− 1, half of the time k will
be odd. If k is odd, notice that:

gp−1 ≡ 1 (modn) ≡ gkr.

This implies that (p− 1) divides kr. But (p− 1) is even while k is odd. Thus, r is even. ♦
The generalization to (Z/nZ)× is quick using the Chinese remainder theorem. Here, we assume

that n is the power of two odd primes p and q. Let a ∈ (Z/nZ)×. We can write the orders of a
as rp and rq for (Z/pZ)× and (Z/qZ)× respectively. Let r be the order of a in (Z/nZ)×, which
exists, once again due to Euler’s theorem.

The Chinese remainder theorem tells us there is an isomorphism between the congruence
classes of n and the the direct product of the congruence classes of p and q. That is, we have an
isomorphism

[a]n ' ([a]p, [a]q) .

In particular, if we were to raise a to the rth power, we get

([1]p, [1]q) ' [1]n = [a]rn '
(
[a]rp, [a]rq

)
.

In short, we have found that raising a to the rth power yields the identity element in (Z/nZ)× as
well as in both (Z/pZ)× and (Z/qZ)×. This implies that both rp and rq divide r. Recapitulating,
we have shown the following:

Lemma 4.2. Let n be the product of two odd primes p and q. Let a ∈ (Z/nZ)×. If r is the order
of a modulo n, rp and rq the orders of a modulo p and q, then rp and rq divide r.

Finally, we can show that the probability that the random integer a will yield nontrivial factors
of n is bounded below by a positive value by the following proposition:

Proposition 4.3. Let n, p, q be as above. Let a ∈ (Z/nZ)× be chosen uniformly at random. Let
r be the order of a. The probability that r is even and that ar/2 6≡ ±1 (modn) is at least 1/4.

Proof. By Lemma 4.1, the probability that rp is even is 1/2. Lemma 4.2 tells us that rp divides

r, so the probability that r is even is at least 1/2. Let x = ar/2 (modn). The Chinese remainder
theorem gives us four possibilities for x, associated to the following pairs:

([±1]p, [±1]q) .
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Two of these correspond to ±1 (modn). Thus, the probability that x 6≡ ±1 (modn) is 1/2. The
joint probability is given by their products; the probability that r is even and x is a nontrivial
square root of 1 modulo n is bounded below by 1/4. ♦

To summarize, we have shown that Shor’s algorithm, with positive probability, will give us
nontrivial factors of n, assuming that we can determine the order of a (or the period of the
associated function f).

4.2. Period finding. So far, the problem of prime factorizing a number has been reduced to
finding the period r of the function f(k) = ak (modn). Here, we will present a simplified version
of the algorithm; the full algorithm is similar, but requires a little bit more careful analysis. For
the reader who wants to work through the full algorithm, [NC] is a great textbook to follow.

Let Q >> n2 be sufficiently large. The simplifying assumption is that r divides Q. This
algorithm requires two registers. The algorithm follows:

1. Set the two registers to the initial state |0〉 ⊗ |0〉.
2. Apply the Fourier transform modulo Q to the first register to get:

1√
Q

Q−1∑
j=0

|j〉 ⊗ |0〉 .

3. Apply the function f to the second register, obtaining:

1√
Q

Q−1∑
j=0

|j〉 ⊗ |f(j)〉 .

Note that we have now entangled the two registers; the sequence in the second register
is periodic, with period r. This also means that f is one-to-one on [0, r − 1].

4. Measure the second register. We obtain a value f(k) where k is uniformly random over
[0, r − 1]. This collapses the system to:

1√
m

m−1∑
j=0

|jr + k〉 ⊗ |f(k)〉 ,

where m = Q/r. We can drop the second register now.
5. By Fourier sampling, we can convert the translation by r into a phase change:

1√
r

r−1∑
j=0

ωjk
∣∣∣∣Qr j

〉
,

where ω = e2πi/Q.
6. Measuring the first register, we get Qj/r, where j is uniformly random on [0, r − 1].

Results from number theory on how Euler’s totient function φ(Q) grows tells us that
there is positive probability that gcd(j,Q/r) = 1. So, by computing gcd(Qj/r,Q), we
get Q/r. Thus, we can determine r.

Epilogue

We stated at the beginning that the goal is to understand the motivation and method for
Shor’s algorithm. As the reader might realize, this was in part an excuse to explore the many
branches of mathematics that go into quantum computing.

For a mathematical treatment of quantum mechanics, I suggest [BT]. For an introduction to
the C∗-algebraic formulation of quantum mechanics, [FS] is very readable.

The classic textbook for quantum computing is [NC], which is self-contained and clearly writ-
ten. For a shorter and less rigorous introduction into quantum computing, I suggest [GL], which
is the first of a two-volume set.
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