
CLASSIFICATIONS OF THE FLOWS OF LINEAR ODE
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Abstract. The goal of this paper is to examine characterizations of linear
differential equations. We define the flow of an equation and examine some of

the flows of linear equations. Then we partition the flows of such equations

based on linear, differentiable, and topological equivalence.
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1. Phase Flows and Phase Curves

In general, a typical ordinary differential equation features a spatial variable and
a temporal variable, and thus the solution to an ODE will describe the motion
of points through space. One important way to capture this idea is through the
concept of flow.

Definition 1.1. A phase flow on phase space M is a one-parameter group of
transformations gt on M .

That is, for each time t ∈ R, there is a bijection gt : M →M and this collection
follows the group property. Think of M as being a collection of particles in space.
This space is in some state at g0. After time t, it is in a different state, with the
particle at point x now at the point gtx. We think of this process as deterministic, or
that the state of the system at a moment uniquely determines the state in the past
and the future, which will motivate our necessity that g be a bijection. Motivated
by physical intuition, we require that the state at time t + s be the same if we
follow the particles to time t and then travel to time s, or if we jump by time t+ s
immediately. This necessitates that gt+s = gsgt. Similarly, we can look at the
system in reverse, motivating the necessity that g−t = (gt)−1.
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Example 1.2. One of the simplest physical examples is the group of transforma-
tions where we define gt(x) = x + t. Physically, this takes the line, and sends
it at unit speed to the right. Note that each of these maps is a bijection, that
g−tx = x− t = (gt)−1x, and gt+sx = x+ t+ s = gs(x+ t) = gsgtx.

It is instructive to view a process both in terms of the state of the whole system
at a specific time, like in the definition above, and by tracking the path of a specific
particle over all time. This motivates the idea of a phase curve.

Definition 1.3. A phase curve of {gt} is the orbit of a point x, which is the set
{y ∈M : y = gtx for some t ∈ R}.

Example 1.4. Let gt be rotation of the plane about the origin by angle 2πt, then
the phase curves are the point 0 and circles around the origin.

It is often useful to require extra regularity on a one-parameter transformation
group.

Definition 1.5. We say that {gt} is a one-parameter diffemorphism group if it is
a one-parameter transformation group whose elements are diffeomorphisms and if
gtx depends smoothly on x and t.

This allows us to formalize the concept of the velocity of a particle traveling in
the phase space M . Let {gt} be a one-parameter group of diffeomorphisms.

Definition 1.6. The phase velocity vector of the flow {gt}, denoted v(x), is defined
by

v(x) =
d

dt

∣∣∣∣
t=0

gtx.

Note that this defines a smooth vector field since gtx is smooth in x and t. This
field represents the velocity at which gtx leaves x.

Consider the mapping φ(t) = gtx0, and let v be the velocity field defined above.

Theorem 1.7. The above map φ is the solution to the following ODE:{
ẋ = v(x)

x(0) = x0

Proof. The proof follows from the group property of the transformation group.

φ̇(s) =
d

dt

∣∣∣∣
t=s

gtx0 =
d

dε

∣∣∣∣
ε=0

gs+εx0 =
d

dε

∣∣∣∣
ε=0

gεgsx0 = v(gsx0) = v(φ(s))

Furthermore, since g0x0 = g−1+1x0 = (g1)−1g1x0 = x0, we have that φ(0) = x0,
as desired. �

Thus we find a clean relationship between the velocity field defined above and
the orbit of a point. Namely, that under the action of the phase flow, a point moves
in such a way that its velocity at every instant is determined by the value of the
phase velocity vector at the point it is currently occupying.

In the above theorem, we associated a phase flow to a differential equation. It
is often instructive to reverse this process, associating an ODE to a flow. Consider
the differential equation ẋ = v(x).



CLASSIFICATIONS OF THE FLOWS OF LINEAR ODE 3

Definition 1.8. The phase flow of the differential equation ẋ = v(x) is the one-
parameter diffeomorphism group for which v is the phase velocity vector field. It
can be found by solving the differential equation, letting gtx0 = φ(t) where φ solves{

ẋ = v(x)

x(0) = x0

Examining the flow of an ODE is often a a very useful tool one can employ.

2. Equivalence of Flows

Let {f t} and {gt} be flows.

Definition 2.1. We say {f t} and {gt} are equivalent if there exists a bijection
h : Rn → Rn such that h ◦ f t = gt ◦ h for any t ∈ R.

We say the flows are linearly equivalent if there exists such an h ∈ GL(Rn) that
is a linear isomorphism, differentiably equivalent if there exists h that is a diffeo-
morphism, and topologically equivalent if there exists such an h that is a homeo-
morphism. If flows are linearly equivalent, then they are differentiably equivalent,
and if they are differentiably equivalent, then they are topologically equivalent.

Theorem 2.2. The above relations are equivalence relations.

Proof. The identity mapping is a linear isomorphism, diffeomorphism, and homeo-
morphism, so f t ∼ f t under each relation. If h◦f t = gt◦h, then f t◦h−1 = h−1◦gt,
so gt ∼ f t under each relation since h−1 is a linear isomorphism, diffeomorphism,
or homeomorphism whenever h is. Finally, if f t ∼ gt and gt ∼ jt, then we have
h ◦ f t = gt ◦ h and k ◦ gt = jt ◦ k. Thus h ◦ f t ◦ h−1 = gt = k−1 ◦ jt ◦ k or
(kh) ◦ f = j ◦ (kh), and since one can compose linear isomorphisms, diffeomor-
phisms, and homeomorphisms, we have f ∼ j. �

Thus we may partition phase flows into disjoint collections based on these three
types of equivalences. This allows us to study the equivalence classes and perhaps
draw conclusions about the differential equations that generate equivalent flows.

3. The Exponential

In this section we define the exponential of an operator, a useful tool for solving
linear equations.

Definition 3.1. Let A be a linear operator. Define the exponential eA by

eA = E +A+
A2

2!
+ · · ·

Where E is the identity operator.
This is the same definition as the exponential of real numbers, and we expect it

to behave the same way.

Theorem 3.2. The series eA converges uniformly on the set {||A|| ≤ a} where
a ∈ R.

In the following proof, we assume the Weierstrass convergence criterion.



4 PETER ROBICHEAUX

Proof. If ||A|| ≤ a, then

||E||+ ||A||+ ||A||
2

2!
+ · · · ≤ 1 + a+

a2

2!
+ · · · = ea

which we know converges. �

One important way in which the exponential of an operator will remain the same
as the exponential of a number is in how it is differentiated.

Theorem 3.3. d
dte

At = AeAt

Proof. The proof follows from differentiating eAt termwise.

d

dt

∞∑
k=0

tk

k!
Ak =

∞∑
k=0

d

dt

tk

k!
Ak = A

∞∑
k=0

tk

k!
Ak

by the uniform convergence of both series involved. �

The above theorem shows us how to solve linear equations.

Theorem 3.4. The solution of the equation{
ẋ = Ax

x(0) = x0

is φ(t) = eAtx0.

Proof. The proof is immediate.

d

dt
φ(t) = AeAtx0 = Aφ(t). �

4. Complexification

Let (Rn)C denote the complexification of the real-vector space Rn, defined below.

Definition 4.1. (Rn)C is the vector space over C, composed of vectors (ξ, η),
ξ, η ∈ Rn, denoted by ξ + iη, and where scalar multiplication is defined by (a +
bi)(ξ + ηi) = (aξ − bη) + (aη + bξ)i.

Note that dim(Rn)C = n, as if (e1, . . . en) is a basis for Rn, then (e1, . . . , en) is
a basis for (Rn)C, where in the second case ei is the complexified vector having
imaginary part 0. If A : Rn → Rn is a real operator, it has a corresponding
complexified operator AC : (Rn)C → (Rn)C defined by the equation AC(ξ + ηi) =
Aξ + (Aη)i.

Theorem 4.2. Let A : Cn → Cn be a complex linear transformation. Then φ(t) =
eAtz0 solves the complex differential equation{

ż = Az

z(0) = z0

just as in the real case.

Proof. The differentiation formula for exponentials holds up for complex exponen-
tials, so the proof is the same as in Theorem 3.4. �
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Now suppose A has n pairwise distinct eigenvalues λk that correspond to eigen-
vectors ξk. Then we know from linear algebra that Cn decomposes into the di-
rect sum of subspaces Cξ1 ⊕ · · · ⊕ Cξn with each Cξk invariant under At and eAt,
where we take At to mean A composed with a scaling by t. Furthermore, in each
Cξk, eAt merely acts as multiplication by eλkt. Thus we can write φ above as
φ(t) =

∑n
i=1 cie

λitξi where ci is a complex constant dependent on the initial con-
ditions. We will use this representation of the solution to linear equations later.

Definition 4.3. If ẋ = Ax is a linear equation, its complexification is defined by
ż = ACz where z ∈ C.

We aim to develop some machinery with the compelexified operator AC to help
inform us about the structure of Rn under A. To that end, a few lemmas are
necessary.

Lemma 4.4. Let φ solve ż = ACz with initial condition z0 and let ψ solve ż = ACz
with initial condition z0. Then ψ = φ.

Proof. Since φ(0) = z0, by uniqueness it is only required to show that φ solves the
equation. But we know that

dφ

dt
=
dφ

dt
= ACφ = ACφ = ACφ

since AC is real, completing the proof. �

Corollary 4.5. If z0 is real, we have that φ is real.

Proof. Since φ solves the equation with initial condition z0 and φ solves the equation
with initial conditions z0 = z0, we have by uniqueness that φ = φ and thus is
real. �

Lemma 4.6. Let A be linear. Then φ solves ż = ACz if and only if its real and
imaginary parts solve ẋ = Ax.

Proof. Note that if we realify, and since we have that A is linear, solving ẋ+ iẏ =
A(x+ yi) = Ax+ iAy is equivalent to solving the system ẋ = Ax and ẏ = Ay. The
other direction is obvious. �

A final easy lemma of linear algebra:

Lemma 4.7. If λ is an eigenvalue of AC corresponding to eigenvector ξ, then λ is
an eigenvalue corresponding to eigenvector ξ.

Proof. Since ACξ = λξ, ACξ = λξ, or ACξ = λ ξ �

The preceding lemma allows the following representation of Rn:

Theorem 4.8. Let A : Rn → Rn have n pairwise distinct eigenvalues, k real and
2m complex. Then Rn decomposes into the direct product of k one dimensional
subspaces and m two dimensional subspaces that are invariant under A.

Proof. We know there are k A-invariant one dimensional subspaces.
Let λ be a complex-eigenvalue to eigenvector ξ under the complexified operator

AC. From the above, we know that λ is an eigenvalue to eigenvector ξ. Thus
span(ξ, ξ) is invariant under AC, and since Rn is invariant under AC, we have that
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span(ξ, ξ) ∩ Rn is invariant under AC. The goal is to show that the preceding
intersection defines a real plane R2 ⊂ Rn.

Note that the real and imaginary parts of ξ are in this intersection, since, letting
x = re(ξ) and y = im(ξ), we have that

x =
ξ + ξ

2
, y =

ξ − ξ
2i

showing that they are in span(ξ, ξ), and they are real as

x =
ξ + ξ

2
=
ξ + ξ

2
= x , y =

ξ − ξ
−2i

=
ξ − ξ
−2i

= y

It is clear that x and y are linearly independent under C, since ξ = x + iy and
ξ = x− iy are linearly independent under C, since they’re eigenvectors. Thus they
span C2. But if they are C linearly independent they are R linearly independent,
and thus they span under R a real plane R2, which is exactly equal to span(x, y)∩Rn
and thus is invariant under AC and thus A.

The eigenvalues of A restricted to the plane R2 defined above are λ and λ, since
complexification does not change eigenvalues and (R2)C contains ξ and ξ.

That there are m such planes is thus clear, since they correspond to the eigen-
values.

Each subspace is linearly independent because the eigenvectors are in each sub-
space in (Rn)C, with one eigenvector in each one dimensional subspace and two in
each two dimensional subspace.

This completes the proof. �

5. Linear and Differentiable Equivalence of Linear Equations

In this section, we classify linear equations based on their various types of equiv-
alence.

Theorem 5.1. Let A,B : Rn → Rn be linear operators with simple eigenvalues
(that is each eigenvalue has algebraic multiplicity 1). Then the differential equations

ẋ = Ax and ẏ = By

are linearly equivalent if and only if the eigenvalues of A and B are the same.

Here we of course mean that the equations are linearly equivalent if the associated
flows are linearly equivalent.

Proof. We first claim that the flows are linearly equivalent if and only if B = hAh−1

for some h ∈ GL(Rn). Suppose the above holds. Let f t be the flow of the first
equation and gt the flow of the second equation. We claim h ◦ f t = gt ◦ h. This is
clear as

d

dt
(h ◦ f t) = h ◦ ẋ = hAx = hAh−1hx = Bhx =

d

dt
(gt ◦ h)

since letting y = hx we get ẏ = hẋ = hAx = hAh−1y = By.
Now if the flows are equivalent then we have ẏ = hẋ = hAx = hAh−1y for each

y so B = hAh−1.
Now we show that all the eigenvalues are the same if and only if B = hAh−1

which will complete the proof.
Suppose B = hAh−1. It is a fact from linear algebra that all the eigenvalues are

the same.
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Suppose all the eigenvalues are the same. Since they are simple, Rn decomposes
into the same number of one-dimensional and two-dimensional subspaces invariant
under both A and B, as shown in Theorem 4.8. Since these subspaces are linearly
equivalent, and we have that A and B are linearly equivalent in these subspaces,
which completes the proof. �

Now we turn to a more elementary result regarding the differentiable equivalence
of linear equations.

Theorem 5.2. The systems ẋ = Ax and ẏ = By are differentiably equivalent if
and only if they are linearly equivalent.

Proof. If they are linearly equivalent, then it is clear that they are differentiably
equivalent.

Now suppose they are differentiably equivalent, or there exists a diffeomorphism
h such that heAt = eBth. Now 0 is a fixed point for system A since A is linear.
Thus c := h(0) is a fixed point of the flow B. Let d be defined as translation by

c, i.e. d(x) = x − c. Note that d(y) also solves the system since ˙d(y) = ẏ = By =
B(y − c) = Bd.

But then if we have h1 = d ◦ h then we have that h1(0) = 0, and that h1 ◦ eAt =
eBt ◦ h1. Let Dh1 be the derivative of h1 at 0. Then we have that Dh1 ◦ eAt =
eBt ◦Dh1. This is linear, and thus we have proved the theorem. �

6. Topological Equivalence of Linear Equations

Consider two linear equations ẋ = Ax and ẏ = By. For every eigenvalue λ of
either A or B, we suppose that re(λ) 6= 0. Let m+(A) be the number of eigenvalues
of A with positive real part, and m−(A) be the number of eigenvalues of A with
negative real part.

The goal of this section is to prove the following topological characterization of
linear equations:

Theorem 6.1. If, as above, two linear systems have no eigenvalues with real part 0,
then they are topologically equivalent if and only if m+(A) = m+(B) and m−(A) =
m−(B).

Before we can prove the above theorem, we must develop some machinery and
prove a few lemmas. The first lemma is trivial:

Lemma 6.2. The direct products of topologically equivalent systems are topologi-
cally equivalent.

Proof. Indeed, suppose h1 ◦ f t1 = gt1 ◦ h1, and h2 ◦ f t2 = gt2 ◦ h2. Then the direct
product of the systems gives rise to the flows (f t1x, f

t
2x) and (gt1x, g

t
2x). These flows

are clearly related by the homeomorphism h(x, y) = (h1(x), h2(y). �

The next lemma is a theorem from linear algebra:

Lemma 6.3. If A : Rn → Rn has no purely imaginary eigenvalues (as required
above), then Rn decomposes into the direct product of two spaces Rm− and Rm+ ,
each invariant under A, and with the restriction of A to Rm− having only eigenval-
ues with negative real part and the restriction of A to Rm+ having only eigenvalues
with positive real part.
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We may thus without loss of generality take the case m−(A) = m−(B) = 0,
considering −A and −B in Rm− . Thus, the problem reduces to the following
lemma:

Lemma 6.4. Let A : Rn → Rn such that m+(A) = n. Then the system ẋ = Ax is
topologically equivalent to the system ẋ = x.

In order to prove the lemma, we require the construction of a special quadratic
form:

Theorem 6.5. There exists a positive-definite quadratic form on Rn denoted r2,
such that the derivative of r2 in the direction of the vector field Ax is positive, for
x 6= 0

It will be easier to prove the above theorem for the complex case:

Theorem 6.6. There exists a positive-definite quadratic form on Cn denoted r2,
such that the derivative of r2 in the direction of the vector field ACz is positive
definite, for z 6= 0, or LACzr

2 > 0, where L denotes the derivative operator.

If we apply the inequality in the above theorem where z ∈ Rn, we obtain the
real case, Theorem 6.5.

Proof. We will take r2 = 〈z, z〉 in an appropriate complex basis. Note that this
definition is positive definite for any choice of basis, so we must only check that
it has a positive derivative in the vector field ACz. Computation shows that the
derivative is in fact 〈z,Az〉+ 〈Az, z〉 = 2 re〈Az, z〉.

It is a fact from linear algebra that there is some basis {ξi} in which A is upper
triangular. Denote the matrix representing A in the basis by ajk. Note that aii =
λi. Fix ε > 0. We claim there is some basis such that |ajk| < ε for all ajk above
the diagonal, i.e. k > j. Now replace {ξi} with the basis {ciξi}. Let a′jk denote the

matrix representation of A in this new basis. Note that a′jk = ajkc
k−j . It is clear

that we can pick c small enough such that |a′jk| < ε for all a′jk above the diagonal,
i.e. k > j.

Note that we can break down 2 re〈Az, z〉 into two quadratic forms, 2 re〈Az, z〉 =
P + Q where P = 2 re

∑
k=l a

′
klzkzl = 2 re

∑n
i=1 λi|zi|2 and Q = 2 re

∑
k<l a

′
klzkzl.

It is clear that P is positive definite since all the λi are positive. Thus it remains
to show that P + Q is positive definite. Note that P is positive definite, and
continuous, thus for the unit sphere |z|2 = 1 which is compact , we have that P
attains a lower bound α > 0. Now since |a′kl| < ε, we have that on the unit sphere
that Q(z) ≤ n2ε||z|| = n2ε. Thus picking ε < α/2n2, we have that (P + Q)(z) ≥
α−n2(α/2n2) = α/2. This shows that P +Q is positive on the unit sphere, which
due to linearity, shows P + Q positive everywhere with z 6= 0. Thus we have the
derivative LACzr

2 > 0, as desired. �

The above function r2 is called the Lyapunov function. We will use its existence
to prove Lemma 6.4.:

Proof. We must construct the required homeomorphism h such that h◦f t = gt ◦h,
where f t is the flow of the equation ẋ = Ax and gt is the flow of the equation ẋ = x.

First, we define the ellipsoid S = {x ∈ Rn : r2(x) = 1}, where r2 is the
Lyapunov function constructed above. Let x0 ∈ S. We define h(f tx0) = gtx0 for
all x0 ∈ S, all t ∈ R. And we define h(0) = 0. We must check three things:
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(1) h(f tx0) = gtx0 for all x0 ∈ S, all t ∈ R, defines a well-defined function.
(2) h is continuous, one-to-one and onto, and with continuous inverse h−1.
(3) h ◦ f t = gt ◦ h.

To this end, we consider the real valued function of a real variable ρ(t) =
ln r2(φ(t)) where φ is a non-zero solution of ẋ = Ax. We claim that ρ(t) is a

diffeomorphism because α ≤ dρ
dt ≤ β. Note that r2(φ(t)) 6= 0 by uniqueness, thus

we can take the derivative
dρ

dt
=
LAxr

2

r2
.

However since the derivative is a positive definite quadratic form by the above
section, we have that αr2 ≤ LAxr2 ≤ βr2, which shows the desired bound.

From this construction follow a number of things.
Firstly, each point x 6= 0 can be represented as x = f tx0 for some x0 ∈ S and

some t ∈ R. Consider the solution φ(t) of ẋ = Ax where φ(0) = x. By the above, for
some τ we have r2(φ(τ)) = 1. Note that x0 = φ(τ) ∈ S. Thus we have x = f−τx0.

Secondly, such a representation is unique. Since ρ is a diffeomorphism, each
phase curve emanating from a point x0 ∈ S can only touch S in one place. Thus
we have constructed a bijection

F : S × R→ Rn − {0}, F (x0, t) = f tx0.

Since φ depends continuously on initial conditions, we have that F and F−1 are
continuous.

Furthermore, we can perform a similar construction with gt, since
dρ

dt
= 2 for g

(where ρ is constructed similarly but with φ solving the associated equation to gt),
creating a bijection

G : S × R→ Rn − {0}, G(x0, t) = gtx0.

By the definition of h, we have that h = G◦F−1 everywhere but at 0, proving that
h is both a bijection and a homeomorphism.

Thus it remains to check continuity of h and h−1 at 0. This follows from the
construction of ρ above. Let ||x|| ≤ 1. Then we have the estimate

(r2(x))
2
α ≤ r2(h(x)) ≤ (r2(x))

2
β

and sending x to 0 we obtain that all of the terms go to 0, confirming continuity of
h at 0 since r2h only goes to 0 if h does. Similarly if we substitute in h−1x instead
of x and send it to 0 we get that limx→0 r

2(h−1x) ≤ 0 and limx→0 r
2(h−1x) ≥ 0,

proving continuity of the inverse.
Finally it remains to show that h ◦ f t = gt ◦ h. Let x 6= 0. Then we obtain that

h ◦ f tx = h ◦ f t(fs(x0)) = h(f t+sx0) = gt+sx0 = gt(gsx0) = gt(h(x0)) = gt ◦ h. It
is clear that for x = 0, h ◦ f t = gt ◦ h. This completes the proof. �

Finally, we combine the above lemmas. Let two systems have no purely imag-
inary eigenvalues. Then if m−(A) = m−(B) and m+(A) = m+(B), both systems
are equivalent to the multidimensional saddle:

ẋ1 = −x1, ẋ2 = x2 x1 ∈ Rm−(A), x2 ∈ Rm+(A)

This completes the proof of the main theorem of the section.
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