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Abstract. The existence of the Frobenius element in the Galois group of a

finite field extension gives crucial references to certain types of Galois groups
and polynomials. In this expository paper, we will first prove the existence of

the Frobenius element. Then we will use the Frobenius element to show the

construction of Galois groups Sp and Ap for prime p, the irreducibility of cy-
clotomic polynomials, and the significance of Chebotarev’s Density Theorem.
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Using the existence of the Frobenius element, we can understand some character-
istics of cyclotomic polynomials and certain types of Galois groups, specifically the
symmetric and alternating groups of prime p. In the first section, we will prove the
existence of the Frobenius element. In the second section, we will use the Frobenius
element to construct Galois groups isomorphic to symmetric groups and alternat-
ing groups of prime p, prove the irreducibility of cyclotomic polynomials, and apply
Chebotarev’s Density Theorem.

1. Frobenius Element

1.1. Existence. We start with the definitions and propositions needed for the proof
of the existence of the Frobenius element.

Definition 1.1. A Dedekind domain R is an integral domain that satisfies either
of the following equivalent properties.

(1) Every nonzero proper ideal of R factors into primes.
(2) R is an integrally closed Noetherian domain such that every nonzero prime

ideal is maximal.
1
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Proposition 1.2. Let A be a Dedekind domain with quotient field F . Let K be
a finite field extension of F and B be an integral closure of A in K. Then the
following holds.

(1) B is a finitely generated A-module.
(2) B is a Dedekind domain.

We omit the proof of the proposition which is shown in Morandi [1]. We also
state the factorization of prime ideals in a finite Galois extension.

Proposition 1.3. Let E/F be a finite Galois extension. Define A and B to be
the ring of integers of the fields E and F respectively. Let p be a prime ideal in A.
Then the ideal pB has the following unique factorization

pB = (

g∏
i=1

Pi)
e

where {Pi} is a set of distinct maximal ideals of B and e is the ramification index
of p. If e is not equal to 1, we say the prime ideal p is ramified in E. Otherwise,
we say the prime ideal p is unramified in E.

Definition 1.4. Let E/F be a finite Galois extension. Let A and B be the rings
of integers of field E and F , respectively. Let p be a prime ideal in A and P be a
prime ideal in B.

(1) p is a prime ideal below P if p = P ∩ A. Equivalently, P is a prime ideal
lying over p if the same condition holds.

(2) The decomposition group DP at P is defined as follows.

DP = {σ ∈ Gal(E/F ) | σ(P) = P}
It is clear that the decomposition group DP is a subgroup of the Galois
group Gal(E/F ).

Now we prove the existence of the Frobenius element in the Galois group of a
finite field extension.

Theorem 1.5. Let A be a Dedekind ring with the fraction field F . Let E/F be a
finite Galois extension. Let B be an integral closure of A in E and P be a prime
ideal in B. Define p to be a prime ideal below P in A such that p = P∩A. Let DP

be the decomposition group at P. Then the natural homomorphism φ is surjective:

DP Gal((B/P)/(A/p))
φ

Proof. By Proposition 1.2, B is a Dedekind domain and a finitely generated A-
module. Hence, B =

∑n
i=1Awi where w1, w2, ..., wn ∈ B. Notice that A is not

necessarily a PID, so {wi} does not have to be a basis of B. We claim that there

exists σ ∈ Gal(E/F ) such that σ(x) = τ(x) where τ ∈ Gal((B/P)/(A/p)) and
x = x mod P. We can show that the above claim holds for {wi} so that every
x ∈ B holds by A-linearity.

Consider the following polynomial g in B[Y,X1, X2, ..., Xn].

g(Y,X1, X2, ..., Xn) =
∏
σ∈G

(Y −
n∑
i=1

(σ(wi)Xi))
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Let σ∗ be any element in the Galois group G. Applying σ∗ to the polynomial g
gives the following factorization.

σ∗(g(Y,X1, X2, ..., Xn))

= σ∗(
∏
σ∈G

(Y −
n∑
i=1

(σ(wi)Xi)))

=
∏
σ∈G

(Y −
n∑
i=1

(σ∗σ(wi)Xi))

Obviously multiplying σ∗ to each factor of the polynomial g reassigns each element
σ to a different element σ∗σ in the Galois group G. Notice that any two factors of
the polynomial σ∗g cannot be the same. If so, then the polynomial g would have
identical factors, which is a contradiction to the construction of g. Hence, for any
element σ∗ ∈ G, σ∗g = g. This clearly shows that the coefficients of the polynomial
g is fixed by the elements of the Galois group G. Hence, the coefficients are in both
B and F , which implies that the coefficients are in B ∩ F = A.

Substitute Y with
∑n
i=1(wiXi), which allows the polynomial g to be an element

of B[X1, X2, ..., Xn]. Then the following holds because the Galois group G has the
identity automorphism.

g(

n∑
i=1

(wiXi), X1, X2, ..., Xn)

=
∏
σ∈G

(

n∑
i=1

(wiXi)−
n∑
i=1

(σ(wi)Xi))

=
∏
σ∈G

(

n∑
i=1

(wi − σ(wi))Xi)

= 0

Reducing g(
∑n
i=1(wiXi), X1, X2, ..., Xn) mod P gives

g(

n∑
i=1

(wiXi), X1, X2, ..., Xn) = 0

in (B/P)[X1, X2, ..., Xn]. Observe that g is in A/p[X1, X2, ..., Xn] because the
coefficients of g are in A.

Extend τ ∈ Aut(B/P) to τ∗ ∈ Aut(B/P[X1, X2, ..., Xn]) by acting on the co-
efficients, i.e. by fixing each Xi. Apply τ∗ to g. The following procedure holds
because τ fixes the coefficients of g.
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τ∗(g(

n∑
i=1

(wiXi), X1, X2, ..., Xn))

= g(τ∗(

n∑
i=1

(wiXi)), τ
∗(X1), τ∗(X2), ..., τ∗(Xn))

= g(

n∑
i=1

(τ(wi)Xi), X1, X2, ..., Xn)

= 0

Then the following holds by the construction of g.

g(

n∑
i=1

(τ(wi)Xi), X1, X2, ..., Xn)

=
∏
σ∈G

(

n∑
i=1

(τ(wi)Xi)−
n∑
i=1

(σ(wi)Xi))

=
∏
σ∈G

(

n∑
i=1

(τ(wi)− σ(wi))Xi)

= 0

It is clear that (B/P)[X1, X2, ..., Xn] is an integral domain, which shows that one
of the factors of the product above is zero. Hence, there exists an automorphism
σ ∈ Gal(E/F ) such that σ(x) = τ(x) for every x ∈ B. Thus, σ(P) = P, which
implies that σ ∈ DP. The homomorphism φ is clearly surjective.

�

Notice that if p is unramified, then the homomorphism φ becomes an isomor-
phism. The order of the kernel of the surjective homomorphism φ is same as
the ramification index of p. Since p is unramified, the ramification index is 1,
which implies that the kernel is trivial. Hence, φ is injective, so φ is an isomor-
phism. The isomorphism between the decomposition group DP and the Galois
group Gal((B/P)/(A/p)) gives the definition of the Frobenius element.

Definition 1.6. Let φ be the homomorphism defined in Theorem 1.5. with the ad-
ditional condition that p is unramified. Define Fr(P/p) ∈ DP to be the Frobenius
element such that φ(Fr(P/p)) is the Frobenius automorphism inGal((B/P)/(A/p)),
i.e. the generator of Gal((B/P)/(A/p)). The Frobenius automorphism is charac-
terized by

φ(Fr(P/p))(x) ≡ xq modP

for every x ∈ B, where q = |A/p|.

1.2. Dedekind’s Theorem. In this section, we will prove Dedekind’s theorem
on the cycle decomposition of the Frobenius element. We will use the theorem
extensively in subsequent sections. We first state the Kummer-Dedekind Theorem
which shows the factorization of prime ideals in a finite number field extension.
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Theorem 1.7. Kummer-Dedekind Theorem
Let E/F be a finite number field extension. Suppose f(x) ∈ OF [x] is the minimal

polynomial of α such that the index N = |OE/OF [α]| is finite. Let p be a prime

ideal of F such that gcd(N, |OF /p|) = 1. If f(x) ≡
∏j
i=1 gi(x) mod p where gi(x) ≡

gi(x) mod p and are distinct, then

pOE =

j∏
i=1

Pei
i

with the following properties:

(1) Pi are distinct prime ideals of OE
(2) Pi = pOE + gi(α)OE

Corollary 1.8. Let E/F be a finite number field extension with E = F (β) where
β ∈ E. Let f(x) ∈ F [x] be a monic minimal polynomial of β. Let p be a prime ideal

in F . If f(x) = f(x) mod p is separable, then p is unramified in the field extension
F (β)/F .

We now prove the following theorem by Dedekind which is similar to Kummer-
Dedekind theorem.

Theorem 1.9. Let f(x) ∈ Z[x] be a monic irreducible polynomial of degree n
and let E = Q(x1, x2, ..., xn) be the splitting field of f over Q where x1, x2, ..., xn
are roots of f(x). Choose a prime p ∈ Z such that p - ∆f , the discriminant
of f . Let B = Z[x1, x2, ..., xn] and let P be a prime ideal of B lying over (p), i.e.
P∩Z = (p). Denote fmodp as f . If f =

∏r
i=1 fi with fi = fi mod p are irreducible

polynomials over Fp of degree ni, then Fr(P/(p)), when viewed as permutation of
roots of f, has the cycle decomposition δ1δ2...δr, each δi with length ni such that
n1 + n2 + ...+ nr = n.

Proof. Since p does not divide ∆f , f mod p is separable. Hence, (p) is unramified.
Recall from the construction of the Frobenius element that the homomorphism

φ : DP Gal((Z[x1, x2, ..., xn]/P)/(Z/pZ))

is an isomorphism if (p) is unramified. Observe that the isomorphism φ sends

σ ∈ DP to σ where σai = σ(ai) for all ai. To elaborate, σ and σ correspond to
the same permutation if we identify DP and Gal((Z[x1, x2, ..., xn]/P)/(Z/pZ)) as
subgroups of Sn.

Notice that Gal((Z[x1, x2, ..., xn]/P)/(Z/pZ)) is cyclic because it is the Galois
group of a finite field extension. Denote π = φ(Fr(P|p)) as the generator of the
Galois group, i.e. the Frobenius element. Notice that we can determine the cycle
decomposition of π by observing the action of π on the roots of f and calculating
their orbits. Since f =

∏r
i=1 fi, each root of f corresponds to a root of fi for some

i. For each i, denote the roots of fi as xi1, xi2, ..., xini .
Without loss of generality, consider the orbit of x11: {x11, π(x11), ..., πa−1(x11)}

where a is the least positive number such that πa(x11) = x11. We claim that a = n1.
Notice that π is the automorphism of Z[x1, x2, ..., xn]/P that fixes Z/pZ. Since f1
is a factor of f mod p, each πk(x11) is a root of f1 for 1 ≤ k ≤ a−1. Hence, a ≤ n1.

Conversely, given any root x1j of f1, there exists a field isomorphism

ϕ : Z/pZ(x11) Z/pZ(x1j)
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that sends x11 to x1j and fixes Z/pZ. Extend ϕ to the field homomorphism

ϕ∗ : Z[x1, x2, ..., xn]/P Z[x1, x2, ..., xn]/P

Observe that ϕ∗ sends x11 to x1j and fixes Z/pZ. This clearly shows that ϕ∗ ∈
Gal((Z[x1, x2, ..., xn]/P)/(Z/pZ)). Because the Galois group is cyclic, ϕ∗ = πs for
some integer s. Hence, x1j is in the orbit of x11. Thus, a = n1, which clearly
implies that (x11 π(x11) ... πa−1(x11)) is a part of the cycle decomposition of π.
Apply the same procedure to the roots of {fi} for each i. The processes produce r
disjoint cycles, each of length ni. �

2. Application

In this section we will deduce several mathematical results in abstract algebra
by using the existence of the Frobenius elements. In the first subsection, we will
construct polynomials which have Galois groups isomorphic to symmetric and al-
ternating groups of prime p. In the second subsection, we will give a proof of
the irreducibility of cyclotomic polynomials. In the third subsection, we will state
Chebotarev’s density theorem and use the theorem to deduce Dirichlet’s theorem
on density of primes and the number of zeroes of f mod p for polynomial f ∈ Q[x]
and for any prime p.

2.1. Construction of Galois Groups: Sp and Ap for prime p. We first observe
the Galois groups isomorphic to symmetric groups of prime p.

Proposition 2.1. For n ≥ 3, the cycles (1 2) and (1 2 ... n) generate the symmetric
group Sn. In particular, for p ≥ 3 prime, any p-cycle and 2-cycle generate the
symmetric group Sp.

Proof. We claim that the set of n − 1 transpositions {(1 2), (2 3), ..., (n − 1 n)}
generates Sn. Notice that for any transposition (a b) such that a < b, (a b) =
(a a + 1)(a + 1 b)(a a + 1). Using induction on a, we can observe that for some i,
(a+ i b) is of the form (j j+1). Since Sn is generated by the set of transpositions,
the set {(1 2), (2 3), ..., (n− 1 n)} generates Sn. Denote τ = (1 2 ... n). Notice that
for any integer 1 ≤ i ≤ n− 2, we have the following.

τ i(1 2)τ−i = (τ i(1) τ i(2)) = (i+ 1 i+ 2)

The products of the permutations (1 2) and (1 2 ... n) create all of the transpositions
of the form (j j+1). Hence, by using the claim above, the cycles (1 2) and (1 2 ... n)
generate the symmetric group Sn.

The case for Sp for prime p is a direct result of relabelling the permuted objects.
First we relabel the objects of arbitrarily chosen 2-cycle as (1 2). For p-cycle, any
suitable power of a p-cycle has the form (1 2 ...k) for integer k. Relabeling the
objects other than 1 and 2 gives the standard p-cycle (1 2 ...p). By the first part of
the proposition, any p-cycle and 2-cycle generate the symmetric group Sp. �

Theorem 2.2. Let f(x) ∈ Q[x] be a monic, separable, and irreducible polynomial
of prime degree p ≥ 3. Define E to be the splitting field of f over Q. If there exists
a prime number q such that f(x) mod q has all but two roots in Fq, where q does
not divide the discriminant of f , then the Galois group Gal(E/Q) is isomorphic to
Sp.
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Proof. Let r1, r2, ..., rp be the roots of f(x) and let E = Q(r1, r2, ..., rp) be the
splitting field of f over Q. Notice that the Galois group Gal(E/Q) is the permu-

tation on the roots of f . Hence we have an embedding Gal(E/Q) Sp .

The Galois group Gal(E/Q) has order divisible by p because for any ri, root of f ,
[Q(ri) : Q] = p is a factor of the degree of splitting field over Q. By Cauchy’s theo-
rem, Gal(E/Q) includes an element of order p. Since we have an embedding from
the Galois group to the symmetric group Sp, it follows that the image of Gal(E/Q)
contains a permutation of order p, which is precisely a p-cycle.

Since f(x) mod q has all but two roots in Fq, by Theorem 1.9 the image of
Gal(E/Q) in Sp contains a cycle decomposition of the Frobenius element, which is
precisely a 2-cycle. By Proposition 2.2, Gal(E/Q) is isomorphic to Sp. �

Example 2.3. Consider the irreducible polynomial x3 − x− 1 which has discrim-
inant −23. Notice that the polynomial has only one root in Z/5Z. Hence, the
polynomial has Galois group isomorphic to S3 by Theorem 2.3. Also consider the
irreducible polynomial x5−4x−1 such that the discriminant is −218+55 = −259019
which is a prime number (The discriminant formula for any quintic polynomial of
the form x5+ax+b is in p.267 of Jacobson [12]). Observe that x5−4x−1 has three
roots in Z/19Z: 4, 10, and 11. Hence, the polynomial has Galois group isomorphic
to S5.

Now we analyze the Galois groups isomorphic to the alternating groups of prime
p.

Proposition 2.4. For n ≥ 3, the following holds:

(1) If n is odd, then {(1 2 3), (1 2 ... n)} is a set of generators of An.
(2) If n is even, then {(1 2 3), (2 3 ... n)} is a set of generators of An.

In particular, for p ≥ 3 prime, any p-cycle and 3-cycle generate the alternating
group Ap.

Proof. We claim that the group An is generated by 3-cycles of the form (1 2 i).
Notice that any 3-cycle in An containing 1 and 2 is generated by 3-cycles of the
form (1 2 i) because (1 i 2) = (1 2 i)−1. Also, for any 3-cycle containing 1 but
not 2, we have (1 i j) = (1 2 j)(1 2 j)(1 2 i)(1 2 j). Observe that An is generated
by the set of 3-cycles of the form (1 i j) because for any 3-cycle (i j k) we have
(i j k) = (1 i j)(1 j k). Hence, An is generated by the set of 3-cycles of the form
(1 2 i).

We make another claim that the set of consecutive 3-cycles (i i + 1 i + 2) for
1 ≥ i ≥ n − 2 generates An. Notice that A3 is generated by (1 2 3). Also
observe that A4 is generated by (1 2 3) and (1 2 4) by the previous claim. Since
(1 2 4) = (1 2 3)(1 2 3)(2 3 4)(1 2 3), the set {(1 2 3), (2 3 4)} generates A4. The
following holds for 5 ≤ j ≤ n.

(1 2 j) = (1 2 j − 2)(1 2 j − 1)(j − 2 j − 1 j)(1 2 j − 2)(1 2 j − 1)

Induction on j shows that (1 2 j) is a product of consecutive 3-cycles. Hence,
the set of consecutive 3-cycles {(i i+ 1 i+ 2)|1 ≥ i ≥ n− 2} generates An.

Suppose n is odd. Denote τ = (1 2 ... n) such that τ ∈ An. Then for 1 ≤ i ≤ n−3
the following holds.

τ i(1 2 3)τ−i = (τ i(1) τ i(2) τ i(3)) = (i+ 1 i+ 2 i+ 3)
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Hence, the set {(1 2 3), τ} is a set of generators of An for n odd.
Suppose n is even. Denote υ = (2 ... n) such that υ ∈ An. Then for 1 ≤ i ≤ n−3

the following holds.

υi(1 2 3)υ−i = (υi(1) υi(2) υi(3)) = (1 i+ 2 i+ 3)

Notice that (i i+ 1 i+ 2) = (1 i i+ 1)(1 i+ 1 i+ 2). Hence, the set {(1 2 3), υ} is
a set of generators of An for n even.

We can deduce the set of generators of Ap for prime p from observing the result
of Proposition 2.2 and the set of generators of An for n odd. �

Lemma 2.5. Let F be a field such that char(F ) 6= 2. Let f(x) ∈ F [x] be a
separable polynomial of degree n such that its roots are x1, x2, ..., xn. Then the
following statements are equivalent:

(1) The embedding of the Galois Group Gal(F (x1, x2, ..., xn)/F ) Sn as

permutations of the roots of f(x) has its image in An.
(2) The discriminant of f , ∆f , is square in F .

Proof. Define δ =
∏
i<j(xi − xj) 6= 0 such that δ2 = ∆f ∈ F . Clearly δ ∈

F (x1, x2, ..., xn). For any σ ∈ Gal(F (x1, x2, ..., xn)/F ), let εσ = ±1 be the sign of
σ as a permutation of {xi}. Then the following procedure holds.

σ(δ) =
∏
i<j

(σ(xi)− σ(sj)) = εσ
∏
i<j

(xi − xj) = εσδ = ±δ

Notice that δ 6= −δ because char(F ) 6= 2 and δ 6= 0. The following equivalence
clearly holds.

σ ∈ An ⇐⇒ εσ = 1

⇐⇒ σ(δ) = δ

⇐⇒ δ is fixed by Galois group Gal(F (x1, x2, ..., xn)/F )

⇐⇒ δ ∈ F
⇐⇒ ∆f is square in F

�

Using Proposition 2.5 and Lemma 2.6, we can deduce the following theorem.

Theorem 2.6. Let f(x) ∈ Z[x] be a monic, separable, and irreducible polynomial
of prime degree p ≥ 3. Assume ∆f , the discriminant of f , is square in Q. Define
E to be the splitting field of f over Q. If there exists a prime number q such that
f(x)modq has all but three roots in Fq, where q does not divide ∆f , then the Galois
group Gal(E/Q) is isomorphic to Ap.

Proof. Let r1, r2, ..., rp be the roots of f(x) and let E = Q(r1, r2, ..., rp) be the split-
ting field of f over Q. Notice that the Galois group Gal(E/Q) is the permutation
on the roots of f . Also notice that ∆f is square in Q. Hence, by Lemma 2.6,

we have an embedding Gal(E/Q) Ap . The Galois group Gal(E/Q) has

order divisible by p because for any ri, root of f , [Q(ri) : Q] = p is a factor of the
degree of the field extension E/Q. By Cauchy’s theorem, Gal(E/Q) includes an
element of order p. Since there exists an embedding from the Galois group to the
alternating group Ap,the image of Gal(E/Q) contains a permutation of order p,
which is precisely a p-cycle.
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Since f(x) mod q has all but three roots in Fq, by Theorem 1.9 the image of
Gal(E/Q) in Ap contains a cycle decomposition of Frobenius element, which is
precisely a 3-cycle. By Proposition 2.5, Gal(E/Q) is isomorphic to Ap. �

Example 2.7. Consider the irreducible polynomial x5 + 20x − 16 such that the
discriminant is 21855+21655 = 21656 which is square in Z. Observe that x5+20x−16
has two roots, specifically 2 and 3, in Z/7Z. Hence, the polynomial has the Galois
group isomorphic to A5.

2.2. Irreducibility of Cyclotomic Polynomials. We can also use the existence
of the Frobenius element to prove that cyclotomic polynomials are irreducible over
Q. Here we state Gauss’s lemma, which we will use to prove the irreducibility of
cyclotomic polynomials. The proof of the lemma is in Chapter 9.3 of Dummit and
Foote [3].

Lemma 2.8. Gauss’s Lemma Let R be a Unique Factorization Domain with the
field of fractions F . Let f(x) ∈ F [x].

(1) If f(x) is a reducible polynomial in F [x], then f(x) is a reducible polynomial
in R[x]. In other words, if f(x) = P (x)Q(x) for some non-constant poly-
nomials P (x), Q(x) ∈ F [x], then there are nonzero elements a, b ∈ F such
that aP (x) = p(x) and bQ(x) = q(x) both lie in R[x] and f(x) = p(x)q(x)
in R[x].

(2) Suppose f(x) is a primitive polynomial in F [x], i.e. the greatest common
divisor of the coefficients of f(x) is 1. Then f(x) is irreducible in R[x] if
and only if f(x) is irreducible in F [x].

Theorem 2.9. Cyclotomic polynomials are irreducible over Q.

Proof. Let E be the splitting field of xn−1 and let G be the Galois group Gal(E/Q).
Define Φn(x) to be the nth cyclotomic polynomial. Consider the multiplicative
group of nth roots of unity in Q, the algebraic closure of Q, as µn. Let ζ ∈ µn be
a primitive nth root of unity. Clearly E contains µn since we can write E as Q(ζ).

Consider the following homomorphism ψ : Gal(Q(ζ)/Q) Aut(µn) It is

clear that Aut(µn) ∼= (Z/nZ)x because each automorphism is uniquely determined
by sending a primitive nth root of unity ζ to ζi for every i such that (i, n) = 1.

We can then define the homomorphism π from ψ. π : Gal(Q(ζ)/Q) (Z/nZ)x

where σ aσ mod n such that σ(ζ) = ζaσ .

Notice that π is injective. If σ ∈ Ker(π), then aσ ≡ 1 mod n, which implies
that σ(ζ) = ζ. Notice that σ then fixes Q(ζ), which shows that σ is the identity.
We claim that π is surjective. If we prove the claim, then |Q(ζ) : Q| = |Z/nZ|x =
deg(Φn(x)), which clearly shows Φn(x) is a minimal polynomial of ζ. Hence Φn(x)
is irreducible over Q.

We now prove the claim. Assume (Z/nZ)x is cyclic. Pick a prime number p such
that generates (Z/nZ)x. Then Φn(x) mod p is separable. By Corollary 1.8, (p) is
unramified in OQ(ζ).

Define (q) to be a prime ideal lying over (p) and define ζ to be the image of ζ
in OQ(ζ)/(q). Let overlineΦn(x) be the image of Φn(x) in OQ(ζ)/(q). Notice that

ζ is the root of the polynomial Φn(x). In other words, ζ is a primitive nth root of
unity.
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By the similar argument used for showing π is injective, the following homo-

morphism ϕ Gal((OQ(ζ)/(q))/(Z/pZ)) (Z/nZ)x is injective. Since (p) is

unramified in OQ(ζ), the decomposition group D(q) at (q), which is the subgroup
of the Galois group Gal(Q(ζ)/Q), is isomorphic to Gal((OQ(ζ)/(q))/(Z/pZ)). By
Definition 1.6, there exists the Frobenius element Fr((q)/(p)) ∈ D(q) such that
its image is the generator of the Galois group Gal((OQ(ζ)/(q))/(Z/pZ)), i.e. the

Frobenius automorphism that sends ζ to ζ
p
. Hence, the image of the Frobenius

automorphism in (Z/nZ)x is p. Since p generates (Z/nZ)x, we have the following
diagram which shows π is surjective.

Gal(Q(ζ)/Q) D(q) Gal((OQ(ζ)/(q))/(Z/nZ)) (Z/nZ)x
ϕ

Now assume (Z/nZ)x is not cyclic. We will prove the claim that for every prime
p ∈ Z such that (p, n) = 1, the minimal polynomials of ζ and ζp over Q agree. If
we prove the claim, then we can show that for any m ∈ Z such that (m,n) = 1,
the minimal polynomials of ζ and ζm over Q agree. Observe that m is a product of
primes, i.e. m = p1p2...pk, such that each pi does not divide n. Proving the claim
assures that the following sequence of primitive nth roots of unity

ζ, ζp1 , ζp1p2 , ..., ζp1p2...pk = ζm

have the same minimal polynomials over Q.
Assume not. Let r(x) be the monic minimal polynomial of ζ over Q and s(x) be

the monic minimal polynomial of ζp over Q. Assume that r(x) 6= s(x). Notice that
both r(x) and s(x) divide xn − 1 because any nth root of unity is a root of xn − 1.
Using Lemma 2.8, any monic factor of xn − 1 in Q[x] is in Z[x]. Hence, both r(x)
and s(x) are in Z[x]. Since r(x) 6= s(x), we can factorize the polynomial xn − 1 as
follows.

xn − 1 = r(x)s(x)t(x)

where t(x) is a monic polynomial in Q. By Lemma 2.8, t(x) ∈ Z. Reduce xn −
1 mod p, which gives the following factorization in Z/pZ.

xn − 1 = r(x) s(x) t(x)

Notice that r(x) and s(x) are not constant because both r(x) and s(x) are monic
polynomials. As aforementioned, since p does not divide n, by Corollary 1.8, xn−1
is separable in Z/pZ. Hence, r(x) and s(x) are relatively prime in Z/pZ.

Since s(ζp) = 0, s(xp) has ζ as a root. Hence, r(x) divides s(xp) in Q[x], i.e.
s(xp) = r(x)u(x) where u(x) is a monic polynomial in Q[x]. Since both s(xp) and
r(x) are monic polynomials, u(x) ∈ Z[x] by Lemma 2.8. Denote s(xp) mod p as

s(xp). Observe that s(xp) = s(x)
p

in Z/pZ by binomial theorem, which gives the
following factorization.

s(x)
p

= r(x) u(x)

Hence, r(x) and s(x) are not relatively prime, a contradiction.
�

2.3. Chebotarev’s Density Theorem. Chebotarev’s density theorem statisti-
cally shows the splitting of prime ideals in Galois extension E of field F , i.e. the
Galois extension E on Q. Before stating the theorem, the following is a well-known
theorem by Dirichlet.
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Theorem 2.10. Dirichlet’s Theorem
Let X be a subset of the set of prime numbers. Define the Dirichlet density of

set X as follows.

D(X) = lim
s→1+

∑
p∈X

1
ps

log( 1
s−1 )

Then for a,m ∈ N such that (a,m) = 1, there are infinitely many primes p such
that p ≡ a mod m. The Dirichlet density of set A of such primes p is.

D(A) =
1

φ(m)

where φ(m) is the Euler’s phi function for integer m.

Dirichlet’s theorem states that the proportion of primes p such that p ≡ amodm
is asymptotic to 1

φ(m) . The generalization of Dirichlet’s theorem is Chebotarev’s

Density Theorem.

Theorem 2.11. Chebotarev’s Density Theorem
Let E/F be a finite field extension. Let A and B be the rings of integers of the

fields E and F respectively. Let p be a prime ideal in A and P be a prime ideal in
B. Define Hσ as the conjugacy class of an element σ in G = Gal(E/F ). Let P be
the following set:

P = {p | p is unramified in E/F, Fr(P/p) ∈ H}

Let X be a subset of the set of primes unramified in the field extension E/F . Define
the density of the set X as follows:

δ(X) = lim
Nto∞

#{p | |OF /p| ≤ N, p ∈ X}
#{p | |OF /p| ≤ N, p prime}

Then the following holds:

δ(P ) =
|Hσ|
|G|

We omit the proof of both theorems. Notice that Dirichlet’s theorem is precisely
the result of Chebotarev’s density theorem where F is Q and the extension E is
Q(ζm), the mth cyclotomic field. Using the proof of Theorem 2.9, we can identify
Gal(Q(ζm)/Q) with (Z/mZ)x). Observe that E/Q is an Abelian field extension.
Hence, the conjugacy class H = {σ} for all σ ∈ Gal(Q(ζm)/Q), which implies
|Hσ| = 1. Let p be a prime ideal of Q with P a prime ideal lying over p. As shown
in the proof of Theorem 2.9, the image of the Frobenius element of the prime ideal
P in (Z/mZ)x is the prime number p which does not divide m. Hence we get a
bijection between the Galois group Gal(Q(ζm)/Q) and the conjugacy class of p in
(Z/mZ)x). Thus, |G| = φ(m). By Theorem 2.11, it is clear that the density of set
P is 1

φ(m) .

Chebotarev’s Density Theorem also provides some insights on the number of
zeroes of f mod p for any prime p.

Definition 2.12. Let S be a subset ofG. We notate the following value 1
|G|

∑
g∈S φ(g)

as
∫
S
φ for function φ. When S is equal to G, we abbreviate the value as

∫
φ.
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Lemma 2.13. Burnside’s Lemma
Let G be a group that acts on set X. Define χ(g) to be the number of fixed points

of g ∈ G on X. Then the number of orbits of G is equal to

1

|G|
∑
g∈G

χ(g) =

∫
χ

Proof. For each
∑
g∈G χ(g), each x ∈ X is counted |Stab(x)| times where Stab(x)

is the stabilizer of x. Assume x and y are on the same orbit. Then |Stab(x)| =
|Stab(y)|. In other words, we count (G : Stab(x)) elements, all of which consti-
tute the orbits of x, a total of (G : Stab(x))(Stab(x)) = G times. Hence, each
orbit constitutes |G| times to the sum. Hence the number of orbits is equal to
1
|G|

∑
g∈G χ(g). �

Corollary 2.14. Let G be a group that acts transitively on non-trivial set X. Then
there exists an element g ∈ G such that it has no fixed points.

Proof. Since G acts transitively on X, the number of orbit of G is equal to 1, which
implies that 1

|G|
∑
g∈G χ(g) = 1. Observe that χ(1) = |X| > 1 since X is non-

trivial. If χ(g) ≥ 1 for every g ∈ G, then the left hand side of the above equality in
Lemma 2.13 is definitely bigger than the right hand side, a contradiction. �

Now we observe the number of zeroes of f mod p for any prime p.

Theorem 2.15. Let f(x) ∈ Z[x] be an irreducible polynomial of degree n ≥ 2.
Define Np(f) as the number of zeroes of f in Z/pZ for prime p. Then there exist
infinitely many primes p such that Np(f) = 0.

Proof. Define the function χ2(g) to be the number of fixed points by g ∈ G in
X ×X with G acting transitively on X. Let

∫
χ2 be the number of orbits of G on

X ×X. Clearly,
∫
χ2 ≥ 2.

Denote the set {g ∈ G | χ(g) = 0} as G0. Assume g /∈ G0. Then 1 ≥ χ(g) ≥ n,
which implies the following procedure.

(χ(g)− 1)(χ(g)− n) ≤ 0

=⇒
∫
G−G0

(χ(x)− 1)(χ(x)− n) ≤ 0

=⇒
∫
G

(χ(x)− 1)(χ(x)− n) ≤
∫
G0

(χ(x)− 1)(χ(x)− n) =

∫
G0

n

Since G acts transitively on X,
∫
χ = 1 by Lemma 2.13. Then the left hand side

of the inequality is as follows.∫
G

(χ(x)− 1)(χ(x)− n) =

∫
G

(χ2(x)− (n+ 1)χ(x) + n)

=

∫
G

(χ2(x))− (n+ 1) + n

≥ 2− (n+ 1) + n = 1

The right hand side of the inequality is as follows.∫
G0

n = n

∫
G0

1 =
n

|G|
∑
g∈G0

1 =
n|G0|
|G|
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Hence we get the following inequality by comparing the left hand side and the right
hand side.

|G0|
|G|
≥ 1

n

We now consider f(x) ∈ Z[x] with X = {r1, r2, ..., rn}, the set of distinct roots of
f . Denote E as the splitting field of f over Q. Then the Galois groupG = Gal(E/Q)
acts transitively on X. Let G0 be the set {σ ∈ G | χ(σ) = 0}. If Np(f) = 0 for
prime p, then by Theorem 1.9. Fr(p) does not have any fixed points. Hence,
Fr(p) ∈ G0. It is clear that G0 is stable under conjugation. By Theorem 2.11, the
set P = {p | Fr(p) ∈ G0} has density

δ(P ) =
|G0|
|G|
≥ 1

n

Thus, there exist infinitely many primes p such that Np(f) = 0. �

Understanding the distribution of number of zeroes of polynomial f mod p for
prime p may give some information about f(x).

Corollary 2.16. Let f(x) ∈ Z[x] be an irreducible polynomial such that f mod p
has zeroes for almost every prime p. Then f(x) is linear.

Proof. The corollary is the contrapositive of Theorem 2.15. Assume f is an ir-
reducible polynomial that has degree n ≥ 2. Then by Theorem 2.15, there exist
infinitely many primes p such that the number of zeroes of f in Z/pZ is 0, which is
a contradiction. �
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