
FROM HAMILTONIAN SYSTEMS TO POISSON GEOMETRY

SETH MUSSER

Abstract. We introduce Hamiltonian systems and derive an important stability result,
along with giving some physical motivation. We then move onto the generalization of these
systems found in symplectic geometry. Next we consider symplectic geometry’s natural
generalization, Poisson geometry. After giving some definitions we present the motivating
example of the torqueless Euler equations. These motivate us to consider the abstract
structure of Poisson geometry, but we first need to introduce some concepts from multi-
vector calculus. Finally we arrive at some important results connecting symplectic geometry
and Poisson geometry, including the Darboux-Weinstein theorem.
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1. Introduction

A general time-independent Hamiltonian system is one which has a smooth function
H : Ω ⊂ R2n → R : z 7→ H(z) such that Ω is open and

ẋ = J∇H(x) and x(0) = x0, J =

(
0 I
−I 0

)
(1)

with I being the n × n identity matrix and with ∇H(x) being the gradient ∇H evaluated
at x ∈ R2n. Further we have chosen to use ẋ to represent dx/dt and when necessary
ẍ = d2x/dt2. We call H the Hamiltonian of the system. Since we have made sure that
our definition of H ensures that it is smooth, then we know by the existence and uniqueness
theorems of ordinary differential equations that there exists some unique flow φt : R2n → R2n

that solves the system, and provides a diffeomorphism from R2n onto itself [1]. This system is
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important in physical contexts, as we shall see, because it well describes classical mechanical
systems, but also because it lends itself well to the analysis of nonlinear stability.

If we are willing to introduce smooth manifold theory then we can generalize these results
and make them much more powerful. For example, we can drop the requirement that (1)
holds and replace it with the weaker requirement that (1) holds only in local coordinates. In
this case the natural ambient space on which our dynamics occur is a manifold. If we further
abstractify, then we can move beyond local coordinates entirely and globally generate our
dynamics from a two-form. This is the realm of symplectic geometry, as we shall see.

Sometimes even the more abstract symplectic geometry is not enough for the system we
wish to describe. For example, if in local coordinates we change J to a matrix of the form 0 I 0
−I 0 0
0 0 0

 we acquire what is known as a non-canonical Hamiltonian system. This system

will have extra invariants, given by the now non-trivial kernel of J . Poisson geometry was
built to handle this, and is a further abstraction of symplectic geometry. Most of the paper
is concerned with this, and once we have a few definitions and propositions under our belt
we will introduce the torqueless Euler equations in the context of Poisson manifolds as a
motivating example to guide us into the more geometric concerns of Poisson geometry.

By the end of the paper we will prove some important theorems about the structure of
Poisson manifolds, and state the splitting theorem. However, to have space for this we
assume a certain level of fluency in smooth manifold theory. Lee’s book Smooth Manifold
Theory [3] is an excellent resource. The stability section is suitable for any advanced calculus
student and should be seen as a motivating section meant to grab the attention of a more
physically minded reader. The sections that follow assume familiarity with the results in
chapters 1-16 of [3], and fluency in those in chapters 1-5, 8-11, and 14-16.

2. Basic Stability Results of Hamiltonian Systems

Remark 2.1. We note that given the flow mentioned above which solves the system φt : R2n →
R2n we have that

dH

dt
(φt(x0)) =∇H(φt(x0))T φ̇t(x0) +

∂H

∂t
(φt(x0))

=∇H(φt(x0))TJ∇H(φt(x0), t)

=0

where vT denotes the transpose of the vector v ∈ R2n. The second line was arrived at since
H is independent of t, and the last because vTJv = 0 for all v ∈ R2n if JT = −J .

This is an important result in and of itself, as knowing quantities conserved by the flow has
important physical implications, but it also leads to the following major result of nonlinear
stability (wonderfully described in [4]).

Definition 2.2 (Lyapunov Stability). Let φt : Ω ⊂ R2n → R2n be the flow which solves our
system. Further take x∗ to be an equilibrium point of the flow, that is φt(x

∗) = x∗ for all
times t. Then we call x∗ a Lyapunov stable point if for every ε > 0 there exists some δ > 0
such that if ‖x0 − x∗‖ < δ then ‖φt(x0) − x∗‖ < ε for all times t ≥ 0. If a system is not
Lyapunov stable then we call it unstable.
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Theorem 2.3. Let x∗ be an equilibrium point for a time-independent Hamiltonian system.
If the Hessian matrix of H is definite at x∗ then x∗ is Lyapunov stable.

Proof. Let ε > 0. Without loss of generality, because translation does not affect derivatives,
we take x∗ = 0. We then have φt(x0)− x∗ = φt(x0). Note that since φt(0) = 0 then we may
conclude that 0 = J∇H(φt(0)), and since J is invertible we see that ∇H(0) = 0.

Now suppose that the Hessian matrix of H is positive definite, then x∗ = 0 is a local
minimum. Thus there exists some µ > 0 such that H(0) < H(x) for all 0 < ‖x‖ < µ. Take
r = min(ε, µ) and ξ = min‖x‖=rH(x), which we know is achieved for some y ∈ {x | ‖x‖ = r}
since H is continuous. Next take A = {x | ‖x‖ < r and H(x) < ξ}, again by H’s continuity,
we know this is an open set which contains x = 0 since H(0) < H(y). This means that
there is some ball centered at zero Bδ ⊂ A with radius δ. Take x0 such that ‖x0‖ < δ.
Then H(x0) < ξ, but since H is invariant, H(φt(x0)) = H(x0) < ξ. Suppose that there
existed some time t0 such that ‖φt0(x0)‖ ≥ ε, then by continuity of the flow with respect to
time there must have been some time t1 such that ‖φt1(x0)‖ = r. But then that means that
H(φt1(x0)) ≥ ξ, and we see by contradiction that if ‖x0‖ < δ then ‖φt(x0)‖ < ε and we have
Lyapunov stability. The proof for negative definite is identical as one can, without loss of
generality, replace H with −H. �

Remark 2.4. We note that if we had some function F : R2n → R2n which is also invariant
under the flow, and such that x∗ is a local extremum of F then the proof works equally well.

To give a physical introduction to Hamiltonian systems we consider a classical mechanical
system described by position and momentum q, p ∈ Rn. Namely this is a system which
posses some smooth potential energy V : Rn → R : q 7→ V (q) such that it obeys Newton’s
laws

q̇ = p ṗ = −∂V
∂q

.

However, we see that if we take H(p, q) = ‖p‖2/2 + V (q) then this can be written as a
Hamiltonian system if we take x = (q, p). Not only have we succeeded in formulating
classical mechanical systems in terms of a Hamiltonian system, but the Hamiltonian we
used is actually the total mechanical energy of the system. Thus we automatically have the
important result that energy is conserved in classical systems.

Now we consider a specific example to illustrate the importance of stability.

Example 2.5. Consider the simple pendulum described by a rigid massless rod with a mass
attached to the end. By rescaling we may treat all of the relevant quantities as unit. Now
let θ be the angle between the position of the pendulum when hanging straight down and
its currect position. We know from physics that this is a classical system with energy given
by H(q, θ) = p2/2 + (1− cos θ). So then by the above we see that it will obey the equations

θ̇ = p ṗ = − sin θ.

We see that since ∇H(p, θ) = (p, sin θ) our equilibrium points occur at (0, nπ), where
n ∈ N. We note that if n is even, then this corresponds to the pendulum at rest with the
mass hanging down; and if n is odd then this corresponds to the pendulum at rest with the
mass balanced above the rod’s support. Now we conduct the stability test of Theorem 1.1,

3



letting x ∈ R2 be arbitrary.

Hess H(0,nπ)(x) =
(
x1 x2

)(1 0
0 cos(nπ)

)(
x1

x2

)
=x2

1 + (−1)nx2
2.

By Theorem 2.3, we conclude that if n is even then (0, nπ) is Lyapunov stable, but we cannot
say anything above the Lyapunov stability of this point if n is odd. This makes intuitive
sense, as we expect the hanging pendulum to be stable, but the balancing pendulum to be
unstable.

Having motivated physically the desire to look at Hamiltonian systems with stability
theory and physical examples, we now move to generalizations. The first is symplectic
geometry, which we will show reduces to a Hamiltonian system in a special case.

3. Symplectic Geometry

In the following sections we will assume that M refers to a smooth connected manifold,
unless otherwise stated.

Definition 3.1. A symplectic manifold (M,ω) is a smooth manifold M , which is equipped
with a closed, non-degenerate two-form ω (we call this form a symplectic form). In local
coordinates (U, x1, · · · , xn) we will write this form as

ωx =
∑
i<j

ωij(x)dxi ∧ dxj.

We note that the requirement that ω be non-degenerate means M must be even dimen-
sional.

Example 3.2. The canonical example is M = R2n with coordinates (q1, · · · , qn, p1, · · · , pn),
with the form

ω0 =
n∑
i=1

dqi ∧ dpi.

We see that ω0 is clearly a closed two-form, since its coefficients are the identity. It is also
clear that it is non-degenerate upon application of ω0 to basis vectors.

Example 3.3. Another example may be given by M = S2, the 2-sphere embedded in R3.
We take ωp(u, v) = 〈p, u× v〉 where 〈·, ·〉 : R3 ×R3 → R is the standard inner product in R3

and × : R3×R3 → R3 is the cross product with u, v ∈ TpS2. Note that this is the area form
on S2. We can see that this form is closed because it is of top degree, and taking v = u× p
we see that it is non-degenerate.

Given a few examples of these underlying manifolds we now wish to move to the dynamics
on symplectic manifolds.

Definition 3.4. Let V(M) denote the smooth vector fields on M .

We recall that the interior product for differential forms is defined as follows.
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Definition 3.5. Let X ∈ V(M) then ıX is a map

ıX : Ωp(M)→ Ωp−1(M)

defined by the property that

(ıXω)(X1, · · · , Xp−1) = ω(X,X1, · · · , Xp−1)

where ω ∈ Ωp(M) and X1, · · · , Xp−1 ∈ V(M).

We now give a name to the application of the interior product to a two-form.

Definition 3.6. Let M be a manifold and ω ∈ Ω2(M) a two-form. Then the interior product
ı induces a map from V(M) to Ω1(M) given by X 7→ ıXω . We denote this map by

ω[ : V(M)→ Ω1(M) : X 7→ ıXω

Proposition 3.7. If (M,ω) is a symplectic manifold, then ω[ : V(M) → Ω1(M) is a bijec-
tion.

Proof. Both injectivity and bijectivity follow directly form nondegeneracy. �

Definition 3.8. Let (M,ω) be a symplectic manifold and take H ∈ C∞(M). Then we
define the symplectic Hamiltonian vector field of H to be the vector-field XH such that
ω[(XH) = dH.

We note that we may always find such a vector field by Propostion 3.6, since it is just
given by XH = (ω[)−1(dH).

Now we are able to see that the orbits of symplectic Hamiltonian vector fields on the
canonical symplectic manifold are exactly what we have described at the beginning of the
paper.

Example 3.9. Take (R2n, ω0) as our symplectic manifold. Since we are in R2n our local
coordinates are just global coordinates, and we may globally expand ω[(X) as we did in
Proposition 3.6. But when we do this we see that (ω0)ij(x) = Jij. If we then want to solve
the equation XH = (ω[0)−1(dH) it requires solving the coefficient equation

∂H

∂xj
=

n∑
i=1

(XH)iJij.

Since J−1 = JT = −J then we see that (XH)i = (−J∇H)i. Now suppose that we have a
particle with coordinates x = (q1, · · · , qn, p1, · · · , pn) such that it traces out an orbit of XH ,
i.e. ẋi = XH(xi). Then its dynamics will be given by

ẋ = −J∇H.

As promised we have motivated the move to the more abstract symplectic geometry by
showing that in the canonical case the dynamics on the symplectic manifold follow the defi-
nition of the Hamiltonian system (up to a sign). They can also give more general structures,
such as in Example 3.
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4. Poisson Manifolds: Definition and Dynamics

Now we move onto a natural generalization of a symplectic manifold, that of the Poisson
manifold. At first the definition of a Poisson manifold looks quite different from that of
a symplectic manifold, but we will find that they are in fact intimately connected, and in
some sense a Poisson manifold is just a symplectic manifold with the requirement that ω be
non-degenerate dropped.

4.1. Introduction.

Definition 4.1. A Poisson bracket on a manifold M is a binary operation {·, ·} : C∞(M)×
C∞(M)→ C∞(M) satisfying:

(i) Skew-symmetry: {f, g} = −{g, f};
(ii) R-bilinearity: {f, ag + bh} = a{f, g}+ b{f, h} for a, b ∈ R;

(iii) Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0;
(iv) Leibniz identity: {f, gh} = g{f, h}+ {f, g}h.

The pair (M, {·, ·}) is called a Poisson manifold.

The first three requirements are equivalent to the conditions we impose on a Lie algebra,
and the last is equivalent to stating that the bracket is a derivation in each argument.

Example 4.2. Consider R2n with coordinates (q1, · · · , qn, p1, · · · , pn) with the bracket given
by

{f, g} :=
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

It’s clear that skew-symmetry, and R-bilinearity is satisfied. The Leibniz identity follows
directly from the product rule for derivatives. The proof of the Jacobi identity is slightly
more involved, but is just computation and can be found in [6].

This is known as the canonical bracket, and we shall later see that it is intimately connected
to the canonical symplectic form ω0.

As is often the case in analysis it is useful to restrict the relation we are considering to
local coordinates, so that we gain an understanding of its local properties. As we shall see,
locally our bracket looks like the canonical bracket.

Proposition 4.3. Let U be an open neighborhood of (M, {·, ·}) and x1, ·, xn be local coordi-
nates. Then for f, g ∈ C∞(M) we have that

{f, g} =
n∑

i,j=1

{xi, xj}
∂f

∂xi

∂g

∂xj
.

Proof. The proof relies on using the fact that f, g ∈ C∞(M) to Taylor expand them. One
can also see that (ii) and (iv) imply that {f, c} = 0 for any constant c. Then substituting
the Taylor expansions and using this fact and a second application of (iv) to eliminate higher
order terms we have the result. �

We may equivalently write this that {f, g} = ∇fTΠ∇g where Π is the matrix, not neces-
sarily constant, such that Πij = {xi, xj}. If Π is equal to the constant matrix J then we see
that we recover the canonical bracket.
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Now that we have some idea of the properties of the bracket itself we turn our inquiries to
the type of dynamics that will be produced on our manifold by this bracket. Once we have
an understanding of this, then we are neatly motivated to consider the connections between
Poisson and symplectic manifolds.

4.2. Dynamics Under the Bracket.

Definition 4.4. Let (M, {·, ·}) be a Poisson manifold. The Hamiltonian vector field of
H ∈ C∞(M) is the vector field XH defined by:

XH(f) = {H, f}, ∀f ∈ C∞(M).

The function H is called the Hamiltonian function.

The following proposition will be useful to us later.

Proposition 4.5. For any f, g ∈ C∞(M)

X{f,g} = [Xf , Xg]

where [X, Y ] indicates the Lie bracket of X, Y ∈ V(M).

Proof. Take f, g, h ∈ C∞(M). We see:

X{f,g}(h) ={{f, g}, h}
={f, {g, h}} − {g, {f, h}} by Jacobi

=Xf (Xg(h))−Xg(Xf (h)) = [Xf , Xg](h).

�

We know by the existence and uniqueness theorems from ordinary differential equations
that provided we have a C∞, compact, connected Poisson manifold M then we can find a
solution to the problem of finding an orbit of the vector field XH . That is we can find some
x : (−T, T ) ⊂ R → R : t 7→ x(t) such that ẋ = XH(x) = {H, x} with x(0) = x0 and such
that T = ∞; further, provided we are willing to let T be finite, we may drop some of the
other requirements, as seen in [1].

To make the analogy with the dynamics expressed in the Hamiltonian systems given at
the beginning of the paper we rewrite this in local coordinates.

Remark 4.6. Let (U, x1, · · · , xn) be local coordinates and suppose that for each i the dy-
namics are given by ẋi = {H, xi}. Then we see from Proposition 3.1 that the dynamics
become

ẋ = −Π∇H x(0) = x0

where we identified x = (x1, · · · , xn). Locally then we see that the dynamics look similar to
(1), with the constant matrix J replaced with the matrix −Π.

Since the vector field XH was generated in a special way, that is from the Poisson bracket,
we have a useful result about the dynamics of orbits of XH .

Proposition 4.7. Let (M, {·, ·}) be a Poisson manifold, and H ∈ C∞(M) be a Hamiltonian
function. Then f ∈ C∞(M) is constant along any orbit of XH if, and only if, {H, f} = 0.
We further note H is always constant along any orbit of XH , and that if f1 and f2 share
this property, then so does {f1, f2}.
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Proof. We know that f is constant along any orbit of XH if, and only if, XH(f) = 0. So
by definition, our first assertion is true. Further the skew-symmetry of the bracket reveals
that {H,H} = 0, and thus by the first part that H is always constant along any orbit
of XH . Lastly, by the Jacobi idenity and skew-symmetry, we see that {H, {f1, f2}} =
{f1, {H, f2}} − {f2, {H, f1}} = 0, since both f1 and f2 have the property that they are
constant along any orbit of XH . �

Thus we see that we retain the property discussed in the stability section of the preservation
of the Hamiltonian under the flow it produces, which means that we can still use the stability
results developed there.

To further understand the dynamics of the problem, we investigate a series of functions
which are more intrinsic to the bracket itself, and not the given Hamiltonian. Namely, we
look for functions which are preserved along any orbit XH for any Hamiltonian H, and call
them Casimirs or Casimir invariants.

Definition 4.8. Let M be a smooth Poisson manifold. A Casimir of the Poisson bracket is
a function C ∈ C∞(M) such that:

{C,F} = 0 ∀F ∈ C∞(M).

Remark 4.9. In analogy with Remark 4.6 we see that in local coordinates we may choose
F = xi, to denote the projection onto each coordinate, and thusly locally any Casimir is
characterized by the relation Π∇C = 0. In other words, locally we may identify Casimirs
with functions whose gradients are in the kernel of Π.

Next we wish to give a physical example which illustrates the ideas we have thus far
been investigating, and leads us naturally into our next topic of discussion, the connections
between symplectic geometry and Poisson manifolds.

Example 4.10 (Torqueless Euler Equations). We consider the case of a rotating rigid body
with no external torque. Let R3 be identified with the space of angular momentum vectors
L = (Lx, Ly, Lz), and take the moment of inertia tensor to be given by

IP =

Ix 0 0
0 Iy 0
0 0 Iz


in principal coordinates. It is a result from physics that the energy of this body is given by

H(L) =
1

2
LIPL =

L2
x

2Ix
+
L2
y

2Iy
+
L2
z

2Iz
.

Now we define the bracket on R3 by

{f, g}R(L) = [∇f(L)×∇g(L)] · L = ∇fTΠR(L)∇g where ΠR(L) =

 0 Lz −Ly
−Lz 0 Lx
Ly −Lx 0


and where the last expression is global, since we are in R3. We have used the subscript R to
stand for rotation, and will use it later for ease of reference.

It is obvious that conditions (i), (ii), and (iv) of a bracket are fulfilled. Once again the
Jacobi identity is the most lengthy to check, but involves only some vector calculus and is
done in [4].
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Remark 5 allows us to quickly compute that

{H,Lx}R =

(
1

Iz
− 1

Iy

)
LyLz

{H,Ly}R =

(
1

Ix
− 1

Iz

)
LxLz

{H,Lz}R =

(
1

Iy
− 1

Ix

)
LxLy.

But we know from physics that these are exactly the equations for a rotating rigid body
with no external torque. So then we see that L̇ = {H,L}R if we take the convention that
{H,L}R = ({H,Lx}R, {H,Ly}R, {H,Lz}R). We thus see that the dynamics of a rotating
rigid body without torque are described exactly as the orbits of the Hamiltonian vector field
obtained on (R3, {·, ·}R) with a Hamiltonian that is the total energy of the body.

Next we turn to Remark 7 to identify Casimirs of this system. We may solve the system
with separation of variables, which reveals that any Casimir is of the form f(L(L)), where
f : R→ R and L : R3 → R : L 7→

√
L2
x + L2

y + L2
z.

Thus for any choice of a Hamiltonian, the resulting dynamics will be constrained to live
on a set on which L is constant, namely a two-sphere of radius L0 centered at the origin,
which we denote by S2

L0
. We now restrict our bracket to such a sphere, so that we now take

M = S2
L0

and f, g : S2
L0
→ R to be smooth functions, with the bracket defined as before.

Given the domain of definition of f and g we see that ∇f(r),∇g(r) ∈ TrS2
L0

, and thus the
bracket restricted to this space becomes (to within scaling of L) identical to the symplectic
form given in Example 3.3. We note that if we are restricted to such spheres then up to a
constant we have that {f, g} = ω(Xf , Xg) where ω is the two-form given in Example 2 and
Xf and Xg are the Hamiltonian vector fields of f and g, respectively.

This example nicely illustrated a system where Poisson geometry was necessary to describe
the dynamics, as the configuration space R3 could not be a symplectic manifold (since it is
not of even dimension). However, when we took account of the Casimirs of the system we
found that our Poisson manifold R3 was actually made up of invariant symplectic manifolds
S2
L,0 which were invariant regardless of the Hamiltonian. Further when we restricted our

bracket to these submanifolds then we saw it was intimately connected to the symplectic
two-form on the submanifolds. It turns out that all these results are general, though it will
take some work to show it.

5. From Brackets to Bivectors

Before we can make these powerful conclusions about Poisson manifolds we must first
build up a language of the natural dual to differential forms, namely, multivectors.

5.1. Multivectors: Definition and Application. Let V(M) be the space of smooth
vector fields on the manifold M . We recall that differential k-forms can be described as
smooth sections of the kth exterior power of the cotangent bundle of M , expressed as

Ωk(M) = Γ
(∧k T ∗M

)
. Dually, we make the following definition.

Definition 5.1. Let k-multivector fields be smooth sections of the kth exterior power of the

tangent bundle of M , or Vk(M) = Γ
(∧k TM

)
.
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Just as k-forms take k smooth vector fields and return a smooth function on the manifold,
so do k-multivector fields take k smooth differential forms and return a smooth function
on the manifold. Note that we have referenced the exterior product on smooth sections
of TM ; this is defined identically to the exterior product on smooth sections of T ∗M , and
unsurprisingly the same facts hold. Knowing this we have the following useful result which
generalizes the identification of vector fields with derivations.

Proposition 5.2. Take M to be a smooth manifold and φ ∈ Vk(M). Then the relation

φ(f1, · · · , fk) = φ(df1, · · · , dfk)

establishes a one-to-one correspondence between k-multivector fields, φ, and R-multilinear
alternating maps of degree k, φ, provided that we have

φ(f1, · · · , gh, · · · , fk) = gφ(f1, · · · , h, · · · , fk) + φ(f1, · · · , g, · · · , fk)h(2)

or that φ is a derivation in each argument.

Proof. This proof is identical to the proof which shows that there is a one-to-one identification
of derivations with vector fields. �

Corollary 5.3. Given a Poisson manifold (M, {·, ·}) there exists a bivector field π : Ω1(M)×
Ω1(M)→ C∞(M) such that π(df, dg) = {f, g}.

Further, given a manifold M and a bivector π on that manifold we can define a bracket
{f, g} = π(df, dg) which satisfies the requirements (i), (ii), and (iv) on our Poisson bracket.

Proof. We see that requirements (i), (ii), and (iv) are equivalent to defining a R-multilinear
alternating map of degree 2, that satisfies requirement (2) of Proposition 3.3. The result
follows directly from the proposition. Note that the expression of this statement in local
coordinates is equivalent to that brought up at the beginning of this discussion on multivector
fields. �

However, it is not true in general that the bracket defined by an arbitrary bivector will
satisfy the Jacobi identity, so we turn to a relation which will help us ensure it does.

5.2. Schouten Bracket and Push-forward.

Definition 5.4 (Schouten bracket). Let φ ∈ Vk(M) and ξ ∈ V l(M) be multivector fields and
φ, ξ be their associated multilinear maps as given to us by Proposition 3.3. The Schouten
bracket of φ and ξ is the multivector field [φ, ξ] ∈ Vk+l−1(M) defined by

[φ, ξ] = φ ◦ ξ − (−1)(k−1)(l−1)ξ ◦ φ,

where we have defined

ξ ◦ φ(df1, · · · , dfk+l−1) =
∑
σ

(−1)sgn(σ)ξ
(
φ(fσ(1), · · · , fσ(k)), fσ(k+1), · · · , fσ(k+l−1)

)
,

and where σ is an arbitrary (k, l − 1) shuffle.

It is possible to show that the Schouten bracket may be viewed as the natural extension of
the Lie bracket on vector fields to multivector fields, but we instead turn towards something
more immediately relevent.
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Remark 5.5. We may see that if we have an arbitrary bivector π ∈ V2(M) and its associated
bracket π(·, ·) = {·, ·}, given by Corollary 3.2, then

[π, π](df1, df2, df3) =2(π ◦ π)(df1, df2, df3)

=2 ({{f1, f2}, f3}+ {{f3, f1}, f2}+ {{f2, f3}, f1}) .

Thus [π, π] = 0 is equivalent to satisfaction of the Jacobi identity by the associated bracket.

This fact means that we may now make an equivalent definition of a Poisson manifold,
but one which will be more useful to us later in our analysis.

Definition 5.6. Let M be a manifold and π ∈ V2(M). If [π, π] = 0 then we call this a
Poisson structure on M . A pair (M,π) where π is a Poisson structure on M is called a
Poisson manifold.

The Schouten bracket has one other important quality, namely that it transforms nicely
under a push-forward, which we now define. Just as a smooth map Φ: M → N induces
a linear map dpΦ: TpM → TΦ(p)N we also know it induces the linear map on the exterior
product of these spaces:

(dpΦ)∗ : ∧k TpM → ∧kTΦ(p)N

which is just the extension of dpΦ with the requirement that it respects the exterior algebra.
The map (dpΦ)∗ may be defined pointwise, but it does not in general map multivector

fields to multivector fields. For example if k = 1 and Φ is not injective for x ∈M then there
is no way to decide which of multiple vectors to assign to a point. However, when this does
not occur we make the following definition.

Definition 5.7. Let Φ: M → N be a smooth map. Two k-vector fields φ ∈ Vk(M) and
ξ ∈ Vk(N) are said to be Φ-related if

ξΦ(p) = (dpΦ)∗φp, ∀p ∈M.

We then write ξ = Φ∗φ.

However, suppose that Φ is not surjective, then ξ could still be Φ-related to φ, yet not be
fully determined by φ ∈ Vk(M) and Φ: M → N . When ξ is fully determined, we call Φ∗φ
the push-forward of φ by the map Φ. From the linearity properties of (dpΦ)∗ it is clear that
the push-forward is linear.

We now see the Schouten bracket’s properties under Φ-relation.

Proposition 5.8. Let Φ: M → N be a smooth map, φ1Vk(M), φ2 ∈ Vk(N), ξ1 ∈ V l(M),
and ξ2 ∈ V l(N). If φ2 = Φ∗φ

1 and ξ2 = Φ∗ξ
1 then

[φ2, ξ2] = Φ∗[φ
1, ξ1].

Proof. Let φ
i
, ξ
i
be the associated multilinear maps and take x ∈M . Further, take f1, · · · , fk

to be arbitrary smooth functions on some open region U ⊂ N . Then we see that

φ
1
(f1 ◦ Φ, · · · , fk ◦ Φ)(x) =φ1

x((df1)Φ(x) ◦ dΦx, · · · , (dfk)Φ(x) ◦ dΦx)

=[(dΦx)∗φ
1
x](df1, · · · , dfk)

(φ
2
(f1, · · · , fk) ◦ Φ)(x) =φ2

Φ(x)(df1, · · · , dfk).
11



By appropriate choice of these arbitrary functions we conclude that φ1 and φ2 are Φ-related
if, and only if

φ
1
(f1 ◦ Φ, · · · , fk ◦ Φ) = φ

2
(f1, · · · , fk) ◦ Φ

and likewise for ξ1 and ξ2. But then we immediately see that

φ1 ◦ ξ1(f1 ◦ Φ, · · · , fk+l−1 ◦ Φ) = φ2 ◦ ξ2(f1, · · · , fk+l−1) ◦ Φ

by substitution. The linearity of Φ-relation then gives us our result. �

5.3. Interior Product. We define the interior product for multivector fields, defined in an
identical fashion to the interior product for forms.

Definition 5.9. Let φ ∈ Vk(M) and α ∈ Ω1(M). Then we define the interior product of φ
by α by ıαφ ∈ Vk−1(M) such that

ıαφ(α1, · · · , αk−1) = φ(α, α1, · · · , αk−1).

It is not difficult to verify that this interior product has the same properties as the interior
product for differential forms. We are interested, however, in a specific type of interior
product on multivector fields similar to ω[ defined in Section 2.

Definition 5.10. Let M be a manifold and π ∈ V2(M) a bivector field. Then the interior
product i gives a map from Ω1(M) to V(M) given by α 7→ ıαπ. We denote this map by

π] : Ω1(M)→ V(M).

6. Structure of Poisson Manifolds

Now that we have formalized most of the multi-vector language we will be using from this
point forward we see its power in allowing us to use some of the more important results of
smooth manifold theory.

In the previous section given π ∈ V2(M) we defined π] : Ω1(M) → V(M). If we consider
this pointwise, we recover the linear map π]x : T ∗xM → TxM which can be extended to
π] : T ∗M → TM .

Definition 6.1. We say that the rank of a bivector field π at x ∈M is the rank of the map
π]x : T ∗xM → TxM . In general the rank of the bivector field will vary from point to point.

There are three nested major cases to consider, that for which π]x has top rank for all x,
that for which it is constant for all x, and that for which it is allowed to vary. In keeping
with the theme of the paper we will build up results for each of these cases. We give the
first two their own name.

Definition 6.2. A non-degenerate Poisson structure π ∈ V2(M) is a Poisson structure
whose rank is constant and always equal to dimM , and a non-degenerate Poisson manifold
is a manifold (M,π) whose Poisson structure is regular.

Definition 6.3. A regular Poisson structure π ∈ V2(M) is a Poisson structure whose rank
is constant, and a regular Poisson manifold is a manifold (M,π) whose Poisson structure is
regular.

We once again turn to the torqueless Euler equations for an example.
12



Example 6.4. We again consider our Poisson manifold to be (R3, {·, ·}R). Since we are in
R3 then T ∗LR3 ∼= R3 and TLR3 ∼= R3. As remarked in Example 4.10 we know that since
we are in R3 then local coordinates are automatically global. Thus we see that the induced
bivector field is given by πL(u, v) = uTΠR(L)v for u, v ∈ T ∗LR3 ∼= R3. One may compute
that rankΠR = 2 for all L ∈ R3. Thus we see that (R3, {·, ·}R) is a regular Poisson manifold,
which is nonetheless degenerate.

First we investigate the special case of non-degenerate Poisson manifolds.

6.1. Non-degenerate Poisson Manifolds.

Remark 6.5. We see that if π is a non-degenerate Poisson structure then π] is a bijection,
and thus for every x ∈M we have that if πx(u, v) for all v ∈ T ∗xM then u = 0 ∈ T ∗xM .

We may characterize non-degeneracy in terms of Casimirs as well.

Remark 6.6. Let π be a Poisson structure on M and {·, ·} be its associated bracket. Suppose
that π is non-degenerate, then this means that for every x we have that if {f, g}(x) = 0 for
every g ∈ C∞(M), then df = 0 ∈ T ∗xM (where we have used the fact that the cotangent
space at x is defined by the differentials of smooth functions on M). But applying df to
the appropriate basis vectors of TxM we see that this means f = c locally, where c is a
constant. The exact same argument applies in reverse, so that if we have a Poisson bracket
on M which only has constant Casimirs, then our Poisson structure is non-degenerate. In
local coordinates nondegeneracy is then equivalent to ker(Πx) = {0} for all x ∈M .

Note that since we have been assuming M to be a connected manifold, we have glossed
over some subtleties that may have arisen if we had dropped this assumption.

Given the multivector language we have established we are now in a place to verify the
suspicion which arose in the example of the Euler equations that if we have a Poisson manifold
with only constants as Casimirs, then this is really a symplectic manifold.

Theorem 6.7. There is a one-to-one correspondence between non-degenerate bivector fields
π ∈ V2(M) and non-degenerate two-forms ω ∈ Ω2(M) given by

ω[ = (π])−1 ←→ π] = (ω[)−1.

Under this identification of π with ω we have that

[π, π](α, β, γ) = dω(π](α), π](β), π](γ)), α, β, γ ∈ Ω1(M).

Proof. The first part of this proof is identical to the proof given in Proposition 3.6, which
allows us to demonstrate that both π] and ω[ are bijections. However, given their domains,
we immediately have the one-to-one correspondance with the properties we wished to find.

Since it is enough to check that the relation above holds pointwise, we may restrict our
consideration to the case where α, β, γ are exact 1-forms. Let π(·, ·) = {·, ·} where this
bracket does not necessarily satisfy the Jacobi identity. From Remark 5.5 we see that

[π, π](df1, df2, df3) = 2 ({{f1, f2}, f3}+ {{f3, f1}, f2}+ {{f2, f3}, f1}) .
We use the invariant formulation of the exterior differential (described in Proposition 14.32

of [3]) to see that:

dω(X, Y, Z) =X(ω(Y, Z)) + Y (ω(Z,X)) + Z(ω(X, Y ))

−ω([X, Y ], Z)− ω([Z,X], Y )− ω([Y, Z], X).

13



We then take X = π](df1), Y = π](df2), and Z = π](df3). We see that:

ω(π](dfi), π
](dfj)) =〈ω[(π](dfi)), π](dfj)〉,

=〈dfi, π](dfj)〉
=π(dfj, dfi) = −{fi, fj}

where we have used the relation ω[ = (π])−1. If we use this, and the relation estabilished in
Proposition 4.5 that [π](dfi), π

](dfj)] = π]({fi, fj}), we see that

dω(π](df1), π](df2), π](df3)) = 2 ({{f1, f2}, f3}+ {{f3, f1}, f2}+ {{f2, f3}, f1})
and we have our relation. �

Corollary 6.8. Let (M,π) be a Poisson manifold with a non-degenerate Poisson structure.
Then it is a symplectic manifold, with ω found from the one-to-one correspondence shown in
Theorem 6.7. Similarily if (M,ω) is a symplectic manifold, then it is also a Poisson manifold
with a non-degenerate Poisson structure.

Proof. By Theorem 6.7 we see that if π is a Poisson structure, i.e. [π, π] = 0, then its
associated two-form ω will be closed, and vice versa. With the correspondence estabilshed
by Theorem 3.1, we may then conclude. �

Then, as promised, we see that a Poisson manifold with a bracket which has no non-
constant Casimirs is really just a symplectic manifold. Now we consider the case where π is
allowed to have degeneracies.

6.2. Regular Poisson Manifolds. In order to generalize the result of the torqueless Euler
equations we must first discuss what exactly it means to be a submanifold of a Poisson
manifold.

We will also rely on the material in appendix A where there are some definitions and
theorems related to distributions and foliations of smooth manifolds. Lee [3], Chapter 19 is
an excellent reference and gives proofs of all of the theorems we merely state here. For each
important result the relavent theorem or proposition in [3] is given.

Definition 6.9. A Poisson submanifold of a Poisson manifold (M,πM) is a Poisson manifold
(N, πN) together with an injective imersion i : N ↪→M which has the property that i∗πN =
πM .

Since we view i as an inclusion we identify dxi(TxN) with a subspace of Ti(x)M . Before
we look at foilations of regular Poisson structures we must prove the following lemma.

Lemma 6.10. Let (M,πM) be a Poisson manifold. Given an immersed submanifold N ↪→M
there is at most one Poisson structure πN on N that makes (N, πN) into a Poisson manifold.
This happens if, and only if, Im(πM)]x ⊂ dxi(TxN) for all x ∈ N .

Proof. We know that if (N, πN) is a Poisson manifold then πN is i-related to πM , in other
words (dxi)∗(πN)x = (πM)i(x) for all x ∈ N . However, if we look back to the definition of
i-relation we see that this means each co-vector π is evaluated at is pulled back by i. So
then this equivalently means:

dxi ◦ (πN)]x ◦ (dxi)
∗ = (πM)]i(x).

14



We note that since i is an immersion, then dxi is injective. Thus we see that πN is unique.
Further, since (πN)]x ◦ (dxi)

∗ ∈ TxN we see that if (N, πN) is a Poisson submanifold then
Im(πM)]x ⊂ dxi(TxN).

Now suppose that N is a submanifold with the injective immersion i : N ↪→M such that
Im(πM)]x ⊂ dxi(TxN). We want to show that there exists a unique smooth πN ∈ V2(N) such
that (πM)]x factors as:

T ∗xM TxM

T ∗xN TxN.

(πM )]x

(dxi)∗ dxi

(πN )]x

Since dxi is injective and Im(πM)]x ⊂ dxi(TxN) we have existance. To establish uniqueness
we must check that for α, β ∈ T ∗xM such that α(u) = β(u) for u ∈ dxi(TxN) we have
(πM)]x(α) = (πM)]x(β). Take γ ∈ T ∗xM to be arbitrary, and 〈·, ·〉 to denote evaluation. Then
we see that:

〈(πM)]x(α)− (πM)]x(β), γ〉 =〈(πM)]x(α− β), γ〉
=− 〈α− β, (πM)]x(γ)〉.

But since (πM)]x(γ) ∈ dxi(TxN) we see that this evaluates to zero, and we have found such
a unique smooth (smoothness is automatic) πN with the factorization shown below.

Now observe that [πN , πN ] = 0. By Proposition 5.8 we see that

[πM , πM ] = i∗([πN , πN ]),

with i an immersion. This shows that if Im(πM)]x ⊂ dxi(TxN) then N has a unique Poisson
structure so that it is a Poisson submanifold. �

Now we are able to prove an extremely powerful result about regular Poisson manifolds.

Definition 6.11. Let M be a smooth manifold, and N be an immersed submanifold via the
inclusion map i : N ↪→ M . Then let TNM be the restriction of the tangent bundle on M
to N , that is the pullback of the tangent bundle on M to a vector bundle on N via i, and
likewise for T ∗NM .

Theorem 6.12. Let (M,π) be a regular Poisson manifold. Then Imπ] is an integrable
distribution. Each leaf S of Imπ] is a Poisson submanifold of (M,π) and the induced Poisson
structure πS ∈ V2(S) is non-degenerate.

Proof. We see that Imπ]x ⊂ TxM , and since π is a regular Poisson structure this subspace
has the same dimension for every x. So then Imπ] is a distribution. Since it is spanned
by smooth vector fields of the form XH = π](dH) for H ∈ C∞(M) we know that it is a
smooth distribution. Further, since we showed earlier that X{f,g} = [Xf , Xg] we now see
that it is involutive. Then by the Global Frobenius Theorem we see that Imπ] is completely
integrable, and forms a foliation of M .

Let S be a leaf of this foliation and take i : S ↪→M to be the inclusion map. Since S is a
leaf Imπ]x = TxS for all x ∈ S, and since i is an inclusion we see that TxS = dxi(TxS). So
then we can apply the previous lemma to conclude that S is a Poisson submanifold.
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Since TxS = Imπ]x = TxS for all x ∈ S the induced Poisson structure πS on this leaf
satisfies

π](α) = π]S(α|S), ∀α ∈ T ∗SM
that is π] is described by the induced Poisson structure on S acting on one-forms restricted to
the domain of S. But this means that Imπ]S = TS and we see that πS is non-degenerate. �

We thus see that a regular Poisson manifold is foliated into symplectic leaves of dimension
equal to the rank of π]x for any x ∈M , since this is the rank of the distribution Imπ]. We use
symplectic leaves to mean leaves on which the induced Poisson structure is non-degenerate,
a denotation which follows from Corollary 6.8.

Example 6.13. Again we consider the torqueless Euler equations. As stated in Example
6.4 (R3, {·, ·}R) is a regular Poisson manifold, which we now rigorously see is foliated into
leaves which are two spheres centered at the origin. We also can now rigorously see that
the induced Poisson structure on these leaves is non-degenerate, or has no non constant
Casimirs, and thus that they are symplectic.

Thus the dynamics on a Poisson manifold can be totally described by a collection of
Casimirs, and the symplectic structure on the leaf the dynamics are constrained to. This is
an extremely powerful global result, and when we turn to the general case we will not be
able to give such a useful global result (at least not one that is elementary), but we can find
a powerful local result.

6.3. General Case. Unfortunately a paper cannot address everything, and length con-
straints force us to mostly state the results of the general case without proof.

However, Lectures on Poisson Geometry [4] provides a good resource to investigate the
following concepts.

Definition 6.14. We let

(TN)◦ = {α ∈ T ∗NM : α(v),∀v ∈ TNM}

Definition 6.15. A Poisson transversal of a Poisson manifold (M,π) is a submanifold
N ⊂M such that, at every point x ∈ N , we have

TxM = TxN ⊕ π](TxN)◦.

These definitions lead to a rather large collection of lemmas and theorems, which we do
not state. However, they ultimately lead to the following major theorem.

Theorem 6.16 (Splitting Theorem). Let (M,π) be a Poisson manifold and N ⊂ M a
Poisson transversal of codimension 2n. For any ξ0 ∈ N there are local coordinates

(U, p1, · · · , pn, q1, · · · , qn, x1, · · · , xm) centered at ξ0 such that N ∩ U = {p1 = · · · = pn =
q1 = · · · = qn = 0} and

π|U =
n∑
i=1

∂

∂pi
∧ ∂

∂qi
+ πN |N∩U .

Likely the most important result in elmentary Poisson geometry is the Darboux-Weinstein
theorem which here is a corollary of the Splitting Theorem.
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Corollary 6.17 (Darboux-Weinstein Theorem). Let (M,π) be a Poisson manifold, and
assume that rankπξ0 = 2n. Then there exist coordinates

(U, p1, · · · , pn, q1, · · · , qn, x1, · · · , xm) centered at ξ0 such that:

π|U =
n∑
i=1

∂

∂pi
∧ ∂

∂qi
+

m∑
a,b=1

φab(x)
∂

∂xa
∧ ∂

∂xb

where the φab(x) are smooth functions of (x1, · · · , xm) such that φab(0) = 0.

This is a very powerful local result. It says that locally our Poisson manifold looks like the

canonical bracket, with degeneracy allowed, that is we now replace Π = J with Π =

(
J 0
0 0

)
in local coordinates. Thus locally our dynamics are uninteresting, especially in the non-
degenerate case, where our symplectic manifold looks locally like the canonical example.
Globally, however, the non-regular case poses some important open questions.

7. Further Topics

We saw that Poisson geometry allowed us to describe some classical mechanical systems
which were inadequately described by symplectic geometery, such as that of a rotating rigid
body without external torque. Despite this, after moving through several levels of abstraction
we now see that Poisson geometry is in some sense (locally) identical to symplectic geometry
with the non-degeneracy requirement removed. This, and the fact that Poisson systems
have clear invariants, means that the stability results we initially described still hold. This
is yet another reason we might want to describe physical systems in the language of Poisson
geometry.

However, we can still go further in our campaign to abstractify. For example if we allow
M to be locally diffeomorphic to a Banach space instead of Rn then we can formulate
some concepts of Poisson geometry in infinite dimensions. Though infinite Poisson geometry
becomes rife with functional analysis it is immediately applicable to inviscid fluid mechanics,
which is described by the equations

∂M

∂t
+ v ·∇M + (∇ · v)M =−∇p

∂ρ

∂t
+ ∇ ·M =0

where ρ is the density, v is the velocity, p is the pressure, and M = ρv is the fluid momentum.
It can also be described as the system (L2(R), {·, ·}M) where

{F,G}M =

∫
R3

Mi

(
δG

δMj

∂

∂xj

δF

δMi

− δF

δMj

∂

∂xj

δG

δMi

)
d3x+

∫
R3

ρ

(
δG

δM
·∇δF

δρ
− δF

δM
·∇δG

δρ

)
d3x

and where the Hamiltonian is the total energy function given by

H =

∫
R3

(
‖M‖2

2ρ
+ ρU(ρ)

)
d3x

with U the internal energy. This is the point where Poisson geometry really gives more
utility than other methods. Since, as we saw, Poisson geometry makes it much easier to
find invariants and to judge the stability of solutions it lends itself naturally to the open
problems of stability of solutions for inviscid fluid mechanics, investigated in [7]. This area
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of research is exciting, and the author recently investigated using a reduction of this system
to settle some open questions in the realm of self-gravitating fluids.

This idea can be taken further when applied to incompressible fluid mechanics. Here
∂tρ = 0 and ∇ · v = 0. To incorporate these constraints into our bracket, however, we
must introduce a non-physical Hamiltonian. This is physically unsatisfying, and in trying
to understand how to make these constraints intrinsic to our bracket, that is Casimirs, we
turn to the concept of Dirac brackets. This involves modifying a given bracket by adding
Casimirs and is descirbed in [5].

Finally Poisson geometry is quite naturally applicable to quantum mechanics. If we have a
classical system which we wish to quantize we may put it in Poisson form with the appropriate
Dirac brackets, and then simply treat the variables as operators, and the bracket as the
commutator. Of course this is enormously useful, and also entirely rigorous as Dirac showed.
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Appendix A. Distributions and Foilations

A.1. Distributions and the Frobenius Theorem.

Definition A.1. Let M be a smooth manifold. Then for each x ∈ M let Dx ⊂ TxM be a
linear subspace of dimension k, and take D =

⋃
x∈M Dx. We call D a rank-k distribution.

Further suppose each point x ∈ M has some neighborhood U on which there exist smooth
vector fields X1, · · · , Xk : U → TM such that X1 |p, · · · , Xk |p form a basis for Dp at each
p ∈ U . We then call D a smooth distribution.

Definition A.2. Let D ⊂ TM be a smooth distribution and N ⊂ M be a nonempty
immersed submanifold of M . If TxN = Dx for all x ∈ N then we call N an integral manifold
of D.

Definition A.3. A smooth distribution D of M is called integrable if each point x ∈ M is
contained in an integral manifold of D.

We now make the seemingly arbitrary definition of involutivity.

Definition A.4. Let D be a distribution and take X, Y , to be arbitrary smooth vector
fields defined on an open subset of M such that Xx, Yx ∈ Dx for each x. If [X, Y ]x ∈ Dx for
each x, where [X, Y ] is the Lie bracket of the two fields, then we call D involutive.

However, we now see that this definition was not arbitrary.

Proposition A.5. Every integrable distribution is involutive.
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Proof. See Proposition 19.3 of [3]. �

Definition A.6. Take a rank-k distribution D ⊂ TM and a smooth coordinate chart (U, φ)
on M . We say that the coordinate chart is flat for D if φ(U) is a cube in Rn, and for points
of U D is spanned by the first k-coordinate vector fields: ∂

∂x1
, · · · , ∂

∂xk
.

Definition A.7. We say that a given distribution D ⊂ TM is completely integrable if there
exists a flat chart for D in a neighborhood of every x ∈M .

Theorem A.8 (Frobenius). Every involutive distribution is completely integrable.

Proof. See Theorem 19.12 of [3]. �

A.2. Foliations and the Global Frobenius Theorem. Given an involutive rank-k distri-
bution on a smooth manifold M we obtain a collection of integral submanifolds of M which
partition it. The concept of foliation formalizes this.

Definition A.9. Let M be a smooth n-manifold and F be an arbitrary collection of k-
dimensional submanifolds of M . A smooth chart (U, φ) for M is said to be flat for F if
φ(U) is a cube in Rn and each submanifold in F intersects U in either the empty set or a
countable union of k-dimensional slices of the form xi = ci for k + 1 ≤ i ≤ n (where the ci
are constants).

Definition A.10. A foliation of dimension k on M is a collection F of disjoint, connected,
nonempty, immersed k-dimensional submanifolds of M (called the leaves of the foliation),
whose union is M , and such that in a neighborhood of each point x ∈ M there exists a flat
chart for F .

Theorem A.11 (Global Frobenius Theorem). Let D be an involutive distribution on a
smooth manifold M . The collection of all maximal connected integral manifolds of D forms
a foliation of M .

Proof. See Theorem 19.21 in [3]. �
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