
INTRODUCTION TO THE CONVERGENCE OF SEQUENCES

BECKY LYTLE

Abstract. In this paper, we discuss the basic ideas involved in sequences
and convergence. We start by defining sequences and follow by explaining

convergence and divergence, bounded sequences, continuity, and subsequences.

Relevant theorems, such as the Bolzano-Weierstrass theorem, will be given and
we will apply each concept to a variety of exercises.
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1. Introduction to Sequences

Definition 1.1. A sequence is a function whose domain is N and whose codomain
is R. Given a function f : N → R, f(n) is the nth term in the sequence.

Example 1.2. The first example of a sequence is xn = 1
n . In this case, our function

f is defined as f(n) = 1
n . As a listed sequence of numbers, this would look like the

following:

(1.3)

(
1,

1

2
,

1

3
,

1

4
,

1

5
,

1

6
,

1

7
...

)
Another example of a sequence is xn = 5n, which would look like the following:

(1.4) (5, 25, 125, 625...)

We know these are both valid examples of sequences because they are infinite
lists of real numbers and hence can be regarded as functions with domain N.

Example 1.5. The following would not be an examples of sequences:

(1.6) (1, 2, 3)

(1.7) (500, 200, 550, 10000)
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We know that these are not examples of sequences because they are finite lists
of real numbers.

2. Limit of a Sequence

A limit describes how a sequence xn behaves “eventually” as n gets very large,
in a sense that we make explicit below.

Definition 2.1. A sequence of real numbers converges to a real number a if, for
every positive number ε, there exists an N ∈ N such that for all n ≥ N, |an - a| <
ε. We call such an a the limit of the sequence and write limn→∞ an = a.

Proposition 1. The sequence 1
n converges to zero.

Proof. Let ε > 0. We choose N ∈ N such that N > 1
ε . Such a choice is always

possible by the Archimedean property. To verify that this choice of N is appropri-
ate, let n ∈ N satisfy n ≥ N . Then, n ≥ N implies n > 1

ε which is equal to 1
n =

| 1
n −0 | < ε, proving that 1

n converges to zero by the definition of convergence. �

Proposition 2. An example of a sequence that does not converge is the following:

(2.2) (1,−1, 1,−1, ...)

If a sequence does not converge, it is said to diverge, which we will explain later in
the paper, along with the explanation of why the above sequence does not converge.

Proposition 3. If xn ≤ yn ≤ zn for all n ∈ N and limn→∞ xn=limn→∞ zn=l,
then limn→∞ yn=l too.

Proof. Let ε > 0. We want to show there exists an N such that for all n > N ,
| yn − l |< ε. We know that xn → l. Therefore, there exists an N1 such that for all
n > N1, | xn − l |< ε. Also, we know that zn → l. Therefore, there exists an N2

such that for all n > N2, | zn − l |< ε. Let N = max(N1, N2) and n > N . Then,
n > N1 so | xn − l |< ε. Also, n > N2 so | zn − l |< ε. We want to show that
| yn − l |< ε. This is equivalent to showing that both yn − l < ε and l − yn < ε.
We know that yn ≤ zn, so yn − l ≤ zn − l < ε. Also, we know that yn ≥ xn, so
l − yn ≤ l − xn < ε. �

Theorem 2.3 (Algebraic Limit Theorem). Let limn→∞ an = a and limn→∞ bn =
b. Then,

(i) limn→∞ can = ca for all c ∈ R
(ii) limn→∞(an + bn) = a+b
(iii) limn→∞(anbn) = ab
(iv) limn→∞(an/bn) = a/b provided b 6= 0

Example 2.4. If (xn) → 2, then ((2xn - 1)/3) → 1.

Proof. First, we will start with the information given in the example:

xn → 2.

Next, we simply use the fact that (4
3 )( 3

2 ) = 2.

(2.5) xn →
(

4

3

)(
3

2

)
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Now, let an = xn, and let a = (4
3 )( 3

2 ), and let c = ( 2
3 ). From the Algebraic Limit

Theorem, we know that can → ca. Then, (2
3 )(xn) → ( 2

3 )( 4
3 )( 3

2 ), which is equal to
the following:

(2.6)
2xn

3
→ 4

3

The next step follows from the fact that 4
3 = 1 + 1

3 .

(2.7)
2xn

3
→ 1 +

1

3

Let 2xn

3 = an, let (1+ 1
3 ) = a, let bn = (−13 ,

−1
3 , ...), and let b = −1

3 . Then, by
the Algebraic Limit Theorem, we know that an + bn → a+ b. Therefore, we know
that 2xn

3 + −1
3 → (1+ 1

3 ) + −1
3 , which is equal to the following:

(2.8)
2xn

3
− 1

3
→ 1

This last step follows because 2xn

3 - 1
3 = 2xn−1

3 .

(2.9)
2xn − 1

3
→ 1

Therefore, using the Algebraic Limit Theorem, we have shown that if (xn) → 2,
then ((2xn - 1)/3) → 1.

�

Example 2.10. The following sequence converges to the proposed limit

(2.11) lim

(
2n+ 1

5n+ 4

)
=

2

5

Proof. Let 2n
5n+4 be an, let 1

5n+4 be bn and let 2n+1
5n+4 be cn, and cn = an + bn. By

Theorem 2.3, we know that lim(cn) = lim (an+bn) = lim(an)+lim(bn). We must
therefore determine what lim(an) and lim(bn) are.

First, we will show that lim( 1
5n+4 ) = 0. Let ε > 0. By the Archimedean principle,

there exists an N ∈ N such that N > 1/ε. Then, for n > N , 1
5n+4 <

1
5N+4 < 1/N

< ε. Therefore, the limit of 1
5n+4 is zero.

Then, because lim(cn) = lim(an+bn), lim(cn) = lim(an + 0) = lim(an). We will
therefore find the limit of an in order to prove lim( 2n+1

5n+4 ) = 2
5 .

We now want to show that lim( 2n
5n+4 ) = 2

5 . Let ε > 0. By the Archimedean

Principle, there exists an N such that 1/ε < N. Let n > N . We then want to show
the following:

(2.12)

∣∣∣∣ 2n

5n+ 4
− 2

5

∣∣∣∣ < ε

Then,

(2.13)

∣∣∣∣ 2n

5n+ 4
− 2

5

∣∣∣∣ =

∣∣∣∣ −8

5(5n+ 4)

∣∣∣∣
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We have to check the following:

(2.14)
−8

5(5n+ 4)
< ε

(2.15)
8

5(5n+ 4)
< ε

We know that the inequality −8
5(5n+4) < ε is true for every value of n because n

> N > 1/ε and ε. Therefore we only need to show that the inequality 8
5(5n+4) < ε

is true. Using the fact that N > 1/ε, we can say the following:

(2.16)
8

5(5n+ 4)
<

8

5(5(1/ε) + 4)
=

8ε

25 + 20ε

Then, 8ε
25+20ε <

8ε
25 < ε. Therefore, 8

5(5n+4) < ε.

�

Example 2.17. Let xn ≥ 0. If (xn) → 0, then (
√
xn) → 0.

Proof. First, we have to prove that lim(
√
xn) exists. We know that xn is decreasing

but is greater than or equal to 0 for all values of n. The square root of a positive
number is also positive. Therefore,

√
xn ≥ 0. Also, note that if 0< a < b, then

0<
√
a<
√
b. So if xn is decreasing, then so is

√
xn. Therefore, lim(

√
xn) exists.

Next, we must prove that (
√
xn) → 0. Let lim(xn) = lim((

√
xn)(
√
xn)) = 0. By

the Algebraic Limit Theorem, we know that if lim(an) = a and lim(bn) = b then
lim((an)(bn)) = ab. By this theorem, lim((

√
xn)(
√
xn)) = lim(

√
xn)lim(

√
xn) = 0.

Thus, (lim(
√
xn))2=0. This implies that lim(

√
xn)=0.

�

3. Divergence and Bounded Sequences

Definition 3.1. A sequence that does not have a limit or in other words, does not
converge, is said to be divergent.

Example 3.2. Recall proposition 2, which says that the following sequence does
not converge:

(3.3) (1,−1, 1,−1...)

Later in this paper, we will give a concise proof of this fact. Contrast this with
the following sequence, which we have seen

(3.4)

(
1,

1

2
,

1

3
,

1

4
,

1

5
,

1

6
,

1

7
...

)
This converges to zero, as we proved earlier in this paper. However, these se-

quences do have something in common. They are both bounded.

Definition 3.5. A sequence (xn) is bounded if there exists a number M>0 such
that | xn | ≤ M for all n ∈ N. Geometrically, this means we can find an interval
[−M ,M ] that contains every term in the sequence (xn).
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Example 3.6. Given the sequence xn = (1, 2, 1, 2, 1, 2 ...), we can see that
the interval [1, 2] contains every term in xn. This sequence is therefore a bounded
sequence.

Example 3.7. Given the sequence xn = (10, 100, 1000, 10000, ...), we can see
that there is no real number that serves as an upper bound because lim(xn) is
infinity. Therefore, there does not exist any interval that contains every term in
the sequence xn, and xn is not a bounded sequence.

Theorem 3.8. Every convergent sequence is bounded.

Example 3.9. Theorem being illustrated:
Let xn = n+1

n , which is the following sequence:

(3.10)

(
2

1
,

3

2
,

4

3
,

5

4
...

)
We know this converges to 1 and can verify this using the same logic used in

the proof under the definition of convergence showing that 1
n converges to zero.

Therefore, as n becomes very large, xn approaches 1, but is never equal to 1. By
the above theorem, we know that this sequence is bounded because it is convergent.
We can see that xn is a decreasing sequence, so the x1 is the largest value of the
sequence and is the “upper bound.” The limit of the sequence, 1, is the lower bound.
An interval that contains every term in the sequence xn is (1,2].

4. Continuity

Theorem 4.1. If f : R → R is continuous, xn → x implies f(xn) → f(x)

Example 4.2. Theorem being applied:
Let f(x) = 3x. This function is continuous. Let lim(xn) = 5. In order words,

xn → 5. By the above theorem, this implies that f(xn) → f(5). This is equal to
3xn →(3)(5) which is also equal to 3xn → 15. Therefore, we are able to see what
the limit of f(xn) is using this theorem.

Example 4.3. Theorem failing when function is non-continuous:
Let f(x) be 1

x , a non-continuous function. We know this is non-continuous be-

cause there is an asymptote at x=0. Let xn be 1
n . We know this converges to

zero based on a previous proof. Let’s see if the continuity theorem fails for a non-
continuous function f . The theorem states that f(xn) converges to f(x) if xn → x.
We know that xn → 0, so if the theorem works, then f(xn) → f(0). But f(0) = 1

0
which does not exist. Therefore, f(xn) cannot converge to 1/0, and the theorem
fails for this non-continuous function.

5. Subsequences and the Bolzano-Weierstrass Theorem

Definition 5.1. Let (an) be a sequence of real numbers, and let n1 < n2 <
n3 < n4... be an increasing sequence of natural numbers. Then, the sequence
(an1

, an2
, an3

, an4
...) is called a subsequence of (an) and is denoted by (ank

), where
k ∈ N indexes the subsequence.



6 BECKY LYTLE

Example 5.2. Let xn = 1
n = (1, 1

2 , 1
3 , 1

4 ...). Below are two examples of valid
subsequences:

(5.3) (
1

3
,

1

6
,

1

9
,

1

12
...)

(5.4) (
1

20
,

1

200
,

1

2000
...)

Theorem 5.5. Bolzano-Weierstrass Theorem:
Every bounded sequence contains a convergent subsequence.

Example 5.6. Given a sequence xn = (1,2,3,4,1,2,3,4...), a convergent subsequence
can be found.

Proof. We know that this sequence is bounded by the interval [1, 4]. By the
Bolzano-Weierstrass Theorem, we can say that there indeed exists a convergent
subsequence of xn. Just by looking at this sequence, we can see four convergent
subsequences: (1,1,1...), (2,2,2...), (3,3,3...), and (4,4,4...). These subsequences con-
verge to 1, 2, 3, and 4 respectively. �

Example 5.7. Given an unbounded sequence xn = (1,2,3,4,5...), a convergent
subsequence of xn does not exist

Proof. A convergent subsequence does not necessarily exist because this sequence
does not satisfy the Bolzano-Weierstrass Theorem. Recall that any subsequence of
a sequence is non-repeating and in the order of the original entries of xn. Notice
that xn is increasing for all values of n and is divergent, considering the sequence
continues until infinity. Therefore, for any subsequence an, the values will be in-
creasing toward infinity as well, and the subsequence will also be divergent. �

Theorem 5.8. Subsequences of a convergent sequence converge to the same limit
as the original sequence.

Example 5.9. Let us return to the example of a divergent sequence that was given
under the definition of divergence. Recall that this sequence, xn, was (1, -1, 1, -1,
1, -1...). One subsequence of xn is (1, 1, 1, ...). This subsequence converges to 1.
Another subsequence of xn is (-1, -1, -1, ...). This subsequence converges to -1.
Now, we will prove that xn is divergent by contradiction. Assume xn is convergent.
Then, by the above theorem, all its subsequences converge to lim(xn), implying
that all its subsequences converge to the same value. The two subsequences of xn
stated above converge to different values. Therefore, this contradicts our original
hypothesis that xn is convergent. We are then able to conclude that xn is divergent.
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