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Abstract. This paper aims to give a basis for an introduction to variations

of arc length and Bonnet’s Theorem. To do this, it will begin by defining the

first and second fundamental forms of surfaces and by using them to define
Gaussian curvature. With those terms defined, we will then briefly explore

the Theorema Egregium, Geodesics, and the Gauss-Bonnet theorem. Subse-

quently, the exponential map and completeness will be explored in the interest
of proving Hopf-Rinow. Finally, with that background finished, this paper

will provide an introduction to Variations of Arc length. With that as a ba-

sis, we will prove Bonnet’s theorem and briefly explore some mathematical
consequences of the theorem.
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1. Introduction

Differential Geometry on Smooth Surfaces is a fascinating mathematical disci-
pline that uses techniques from calculus and linear algebra to analyze surfaces where
derivatives can be defined. This paper will endeavor to provide a brief introduction
to differential geometry on smooth surfaces specifically focusing on exploring the
first and second variations of Arc Length and Bonnet’s theorem. To this end, we
will first provide a rigorous definition of regular surfaces and explore the first and
second fundamental forms. These concepts give us the foundational definition of
Gaussian Curvature, a scalar that expresses how a surface is curled or flares out.
That will be the basis used to explore the Theorema Egregium, an introduction to
Geodesics, and the famous Gauss-Bonnet theorem, which states:
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Theorem 1.1 (Gauss-Bonnet Theorem; see [2, Thm. 4.7]). The integral Gaussian
curvature over a closed surface is a multiple of 2π.

A previous REU paper by Chase [2] covers Gauss-Bonnet in greater detail. These
results provide a basis for a basic study of differential geometry on smooth surfaces.
We can build an understanding of variations of arc length, in which we study the arc
lengths of families of curves, and use that to prove Bonnet’s theorem, an important
result in differential geometry that states the following:

Theorem 1.2 (Bonnet’s Theorem, see Theorem 8.1 below). If the Gaussian cur-
vature K of a surface is bounded below by some δ > 0, then S is compact and has
a diameter of at most π

δ .

To prove this, we will build a definition of completeness using the exponential
map and subsequently use that to prove Hopf-Rinow, the theorem that there always
exists a minimal geodesic between two points on a regular surface. This paper will
then proceed to define and elucidate the first and second Variations of arc length,
those being facts about families of curves. Finally, this paper will conclude by prov-
ing Bonnet’s theorem and then briefly exploring some mathematical consequences
of it.

2. Surfaces, Fundamental Forms, and Gaussian Curvature

This paper will first begin by delineating the mathematical objects that are to
be examined. This section will detail the mathematical objects that this paper is
concerned with, Regular Surfaces, and then explore the first fundamental form: the
inner product on the tangent space of a regular surface.

Definition 2.1. A set S ⊂ R3 is a Regular surface if, for each p ∈ S, there exists
a neighborhood V ⊂ R3 and an open set U ⊂ R2 such that there exists a map
f : U → V ∩ S that satisfies the following properties:

(1) f is infinitely differentiable.
(2) f is a homeomorphism.
(3) (The Regularity Condition) For each q ∈ U , the differential dfq is one to

one.

One will note that (1) is a requirement for a surface to have if one wishes to do
differential geometry on it due to differential geometry being based on derivatives.
We add (2) in order to make S homeomorphic with R2, making S a 2-dimensional
manifold, and we add (3) to make S diffeomorphic with R2. Additionally, (3) guar-
antees a tangent plane at every point on the regular surface — observe that if one
puts f in the form f(u, v) = (x(u, v), y(u, v), z(u, v)) then the regularity condition

is stating that the Jacobian matrices, ∂(x,y)∂(u,v) ,
∂(y,z)
∂(u,v) ,

∂(x,z)
∂(u,v) , are not all zero at point p.

We will now delve into some examples to elucidate what a regular surface is and
isn’t.

Example 2.2.

(1) An example of a regular surface is a sphere. One will note that there exists

different parameterizations, such as z =
√

1− x2 − y2 among others, that
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partially cover the sphere and that are infinitely differentiable, homeomor-
phisms, and satisfy the regularity condition. This can be shown visually by
the fact that the sphere is differentiable all around and that at every point
on the sphere there exists a single tangent plane.
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This is a graph of a sphere that shows the tangent plane at (0, 0, 5).

(2) An example of a surface that fails condition 2 would be the surface defined
by the function f(u, v) = (u, v, z(u, v)) where z = 1 when either u or v is
rational and z = 0 when u and v are irrational. f is clearly not continuous,
so the surface is not a regular surface.

(3) An example of a surface which fails condition 3 would be a cone. The
Jacobian matrices are all zero at the vertex; the definition of a derivative
when applied at the vertex of the cone does not give a 2 dimensional vector
space like it would when the Jacobian matrices are not all zero.

We shall now define the first fundamental form.

Definition 2.3. Let f(u, v) : U ⊂ R2 → S, where S is a regular surface, be a
map. The first fundamental form of a surface is the expression I = r · r where
r = fudv + fvdu.

The first fundamental form is the Euclidian dot product of this velocity vector
with itself. Because this is an intrinsic property of a surface, the First Fundamental
form does not depend upon the parametrization of the surface. Observe that if one
multiplies out r · r, then one gets the equation
r · r = (fu · fu)(du)2 + 2(fu · fv)(dudv) + (fv · fv)(dv)2.
The various inner products are often denoted E = fu · fu, F = fu · fv and

G = fv · fv. From this equation, we can conclude that the first fundamental form
is a quadratic form.

Here is an example of the first fundamental form being calculated.

Example 2.4. Consider the surface parametrized by the equation f(u, v) = {u2, v2, uv}.
The first fundamental form of this surface would be:
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If(u,v) = (4u2 + v2)(du)2 + 2(uv)dudv + (4v2 + u2)(dv)2.

An important attribute of the first fundamental form is its connection to arc
length. To explain this connection, arc length will first be defined.

Definition 2.5. Let f : I → R3 be a regular parametrized curve. The arc length
of the curve f for t ∈ I would be:

s(t) =
∫ t
t0
| f(t) | dt

where f ′(t) =
√

(x′(t))2 + (y′(t))2 + (z′(t))2.

With that definition, we can algebraically show the connection between the first
fundamental form and arc length.

∫ b

a

| f ′(t) | dt =

∫ b

a

√
f ′(t)f ′(t)dt

=

∫ b

a

√
(f ′(t)udu+ f ′(t)vdv)(f ′(t)udu+ f ′(t)v)dv

=

∫ b

a

E(u′(t))2 + F (u′(t)v′(t)) +G(v′(t))2dt

Thus, one can calculate the arc length of a curve using the first fundamental
form of a surface. This relation between the first fundamental form and arc length
also naturally provides information about surfaces that are isometric to each other.
An isometry is a homeomorphic map of curves from one surface to another that
respects arc length. The following theorem is the relation between isometries and
the first fundamental forms of surfaces.

Theorem 2.6. If S ⊂ R3 and T ⊂ R3 are two regular surfaces, then coordinate
patches of S and T are isometric if and only if there exist parameterizations f :
U ⊂ S → R3 and g : U ′ : S′ → R3 such that their first fundamental forms are
equal.

An important theorem relating the first fundamental form of surfaces with isome-
tries and the definition of area will now be presented.

Definition 2.7 (see [2, Thm.1.5]). If R ⊂ S is a bounded region of regular surface
S and is contained in the parametrization f : U ⊂ R2 → S then the positive
number∫∫

Q
|fu × fv|du dv where Q = f−1(R)

is the area of R.

There are numerous geometric and algebraic justifications of this definition that
will not be presented in this paper in the interest of space. Some justifications can
be seen in Chase and Do Carmo.

3. The Second Fundamental Form and Gaussian Curvature

We will now explore the Second Fundamental Form and Gaussian Curvature,
including Gauss’s Theorema Egregium. All definitions in this section are para-
phrasings from Chapter 3 of do Carmo, so that chapter can be consulted for more
information.
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Definition 3.1 (The Gauss Map). Consider a parametrization f : U ⊂ R2 → S
with regular surface S at point p ∈ S. There exists a map N : f(U)→ S2, with S2

being the unit sphere, such that
N(q) = fu×fv

|fu×fv| (q) for any q ∈ f(U)

The Gauss Map is essentially a map of all the unit normal vectors of a surface.
Note that the fact that N(q) exists at any point in the image is a non-trivial state-
ment. It will not be proven in this paper, but a proof is provided in do Carmo.
When one has an orientable surface S, where N can be defined for all points in S,
this map N is called the Gauss map of a surface. This map is the map of unit nor-
mal vectors of every point in the image of f . Essentially, each unit normal vector
on that curve is transported to the origin, and that vector ends at a point on the
unit sphere.

From this point on, any regular surface S will also be assumed to be orientable.
A few facts about the Gauss Map will now be presented without proof. Proofs for
these statements can be found in do Carmo, 3-2 [1].

• The Gauss Map is differentiable and the differential dNp at any point p ∈ S
is a linear map.
• The differential map dNp is a self adjoint linear map, meaning that dNp(v) ·
w = v · dNp(w) for any v, w ∈ Tp(S).

Now the Second Fundamental Form will be defined:

Definition 3.2. The Second Fundamental Form IIp is defined in Tp(S) by IIp(v) =
−(dNp(v) · v).

The Second Fundamental Form is a quadratic form, and can be written as:
IIp = O(du)2 + Pdudv +Q(dv)2

where O = ruu ·N , P = ruv ·N , and Q = rvv ·N .

Note that because dNp is self adjoint, IIp is a quadratic form. A further expla-
nation of this can be found in do Carmo. Note that the second fundamental form
informally is how quickly a surface pulls away from a tangent plane at a point.

Before we can understand Gaussian Curvature, we must first understand the
normal curvature. The normal curvature is as follows:

Definition 3.3. Let C ⊂ S be a regular curve such that p ∈ C. If k is the curvature
of C at p and cosθ = n · N where N is the normal vector to C at p and N the
normal vector to S at p, the number kn = kcosθ is the normal curvature of C at p.

Observe that , if C is a curve parametrized by function α such that s is the arc
length of C and α(0) = p, then

IIp(α) = −(dNp(a
′(0)) · α(0))

= (N ′(0) · α′′(0))

= N · kn(p)

= kn(p)

Thus, the second fundamental form evaluated on a vector v in Tp(S) is the
normal curvature of a regular curve passing through p and tangent to the velocity
vector v.
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We will now explain Gaussian Curvature.

Definition 3.4. Let dNp be the differential of the Gauss map. The determinant
of dNp is the Gaussian curvature K of S at p ∈ S.

A few examples will be given to better understand Gaussian Curvature:

Example 3.5. • A hyperboloid is an example of a surface that has a neg-
ative gaussian curvature. Surfaces that flare out like hyperboloids have
negative gaussian curvature.
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A hyperboloid has negative Gaussian curvature.

• A sphere is an example of a surface with positive Gaussian Curvature. One
would get that n = 1

ar where r is the radius of the sphere. One will observe

that O = 1
rE, P = 1

rF , and Q = 1
rG. Thus, the gaussian curvature of of a

sphere would be 1
r2 , this being positive Gaussian Curvature. Surfaces that

curve in like a sphere have positive Gaussian Curvature.

−5

0

5 −4
−2

0
2

4

−5

0

5

x
y

z



BONNET’S THEOREM AND VARIATIONS OF ARC LENGTH 7

A sphere has positive Gaussian curvature.

• A cylinder is an example of a surface with 0 gaussian curvature. This is
clear when one notices that one can twist a cylinder into a plane without
stretching it.
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A cylinder has 0 Gaussian Curvature.

We will now go into one of the most important theorems in Differential Geometry:
Gauss’s Theorema Egregium.

Theorem 3.6 (Theorema Egregium). Gaussian Curvature depends only on the
first fundamental form.

Proof. While the proof is too long to state in full due to space constraints, a general
outline of the proof will be given. It can be shown that, given a smooth surface
and an orthonormal basis {e1, e2}, that

K =
e1u·e

2
v−e

1
v·e

2
u√

EG−F 2

and that
e1u · e2v − e1v · e2u
is solely dependent upon the first fundamental form. Thus, K is solely dependent

upon the first fundamental form. �

Note that more information on this proof can be found in both do Carmo and
in Chase’s paper.

This statement classifies the Gaussian Curvature of a surface as an invariant; it
does not depend upon what parametrization on chooses. It states that, without
distorting or stretching, one cannot transform one shape of Gaussian curvature K1

to a shape of Gaussian curvature K2. A well known example of this phenomenon
would be the fact that because the roughly spherical Earth and a planar map have
different Gaussian curvatures, any map must have deformations.
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4. Geodesic Curves

Now it is time to examine another concept in Differential Geometry that is
needed to prove Bonnet’s theorem: Geodesic Curves. A good way to intuitively
understand geodesic curves is that they are the shortest path between points on
a surface. To begin our brief study of them, we must first define the covariant
derivative:

Definition 4.1. Let w be a differentiable vector field in an open set U ⊂ S and
p ∈ U . Let α be a parametrized curve such that α(0) = p and α′(0) = y and let
w(t) be the restriction of w to α. The projection of w′(0) onto the plane Tp(S) is

denoted by Dw
dt (0).

It is important to note that the covariant derivative is in the intrinsic geometry
of a surface. This can be proven by showing that Dw

dt depends only on the vector
y and is dependent on the first fundamental form.

Another concept that will be needed to understand geodesics is regularity.

Definition 4.2. If a curve f : L = [0, l]→ S is the restriction to L of a differentiable
mapping of L ⊂ R to S, then if f(0) = p and f(l) = q, then f joins p to q and f is
regular if f ′(t) 6= 0 for any t ∈ [0, l].

Simply put, a regular curve is a curve that joins two points and always has a
non-zero derivative. With these two definitions, we can now explore a definition for
geodesics.

Definition 4.3. A nonconstant, parametrized curve γ : I → S is geodesic at
t ∈ I if the field of its tangent vectors γ′(t) is parallel along γ at t. This means

the covariant derivative, Dγ′(t)
dt = 0. We say γ is a parametrized geodesic if it is

geodesic for all t ∈ I.

Another, equivalent, definition of a geodesic is as follows:

Definition 4.4. A regular connected curve C ∈ S is a geodesic if, for every p ∈ S,
there eists a parametrization f(s) such that, with s being the arc length parameter,
f ′(s) is a parallel vector field along f(s).

Both of those definitions are equivalent and can be used at different times.
The following proposition that will be used in Gauss Bonnet will be presented

without proof. Proof of this proposition can be found in do Carmo.

Proposition 4.5. Let x(u, v) be an orthogonal parametrization of a neighborhood
of an oriented surface S and let w(t) be a differentiable field of unit vectors along
the curve x(u(t), v(t)). It follows that,

Dw
dt = 1

2
√
EG

Gu
dv
dt − Ev

du
dt + dβ(t)

dt

Where β(t) is the angle from xu to w(t) in a given orientation.

Additionally, another concept that must be introduced is that of geodesic cur-
vature.

Definition 4.6. Let kg be the geodesic curvature of a smooth curve on a surface.
kg = t′ · (n · t).
The geodesic curvature of a smooth curve essentially measures how far from a

geodesic a curve is. For example, the curvature of geodesics, such as a great circle
on a sphere, is zero.
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The geodesic between the points (0, 0, 5) and (5, 0, 0) would be the red curve.
That red curve can be seen to be an arc of the blue great circle. Because this curve
is a geodesic, its geodesic curvature would be 0.

Definitions 4.1-4.4 and proposition 4.5 were based on do Carmo, section 4-4, so
more information on Geodesics can be found there.

5. Gauss-Bonnet and Immediate Applications

It is now time for one of the most important theorems in all Differential Geom-
etry: Gauss-Bonnet. There are two different versions of the theorem that will be
dealt with in this paper: the local version and global version. The local version is
sufficient to provide the results needed for Bonnet’s Theorem, so the global theorem
will be presented without proof.

We will first establish a few definitions before we get into the theorem.

Definition 5.1. Let α[0, l]→ S be a curve such that S is a regular surface. α is a
simple, closed piecewise, regular, parametrized curve if:

(1) α(0) = α(l).
(2) t1 6= t2, t1, t2 ∈ [0, l] implies a(t1) 6= a(t2).
(3) There exists a subdivision

0 = t0 < t1 < ... < tk = l
where α is differentiable and regular on any interval [ti, ti+1] for any

i = 0, ..., k − 1. The trace of α on these integrals are called the arcs of α.

The above definition essentially states that α is a closed curve without self in-
tersections and that has a well defined tangent line at all but a finite number of
points. Additionally, the point α(ti) are called the vertices of α. This definition
will prove useful in proving Gauss-Bonnet.

Definition 5.2. A region R ⊂ S is a simple region of S if R is homeomorphic to a
disk and the boundary of ∂R of R is the trace of a simple, closed, piecewise regular,
parametrized curve α : I → S.

The curve α is positively oriented if the positive orthogonal basis α′(t), h(t)
satisfies that h(t) points towards R.
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By definition, R is a simple region if it is homeomorphic to a disc and if it is
bounded by a simple, closed, piecewise regular, parametrized curve.

Definition 5.3. The integral of f over the region R is the integral∫∫
x−1R

f(u, v)
√
EG− F 2dudv =

∫∫
R
fdσ

Note that the integral is not dependent upon the parametrization x.
With those definitions, we can now state the local version of Gauss-Bonnet. In

the interest of space, the theorem will not be given a full proof, but the proof will
get an outline.

Theorem 5.4 (Gauss-Bonnet (Local)). Let x : U → S be an orthogonal parametriza-
tion of an oriented surface S, where U ⊂ R2 is homeomorphic to an open disc. Let
R ⊂ x(U) be a simple region of S and let ∂R = α(I) for some positively oriented
curve α that is parametrized by arc length s. Let α(t0), ..., α(tk) and θ0, ...θk be the
vertices and external angles of α. Then

k∑
i=0

∫ ti+1

ti
kg(s)ds+

∫∫
R
Kdσ +

∑k
i=0 θi = 2π.

with kg(s) being the geodesic curvature of the regular arcs of α and K is the
gaussian curvature of S.

Proof. Due to being outside the focus of this paper, variations of arc length and
Bonnet’s theorem, this proof will not be given in full. An outline of the proof will
be given, though. This proof begins by using proposition 4.5 to state,

Dw
dt = 1

2
√
EG

Gu
dv
dt − Ev

du
dt + dβ(t)

dt

Note how proposition 4.5 is what allows us to link the first fundamental form to
the external angles of α. If that expression is integrated in every interval [ti, ti+1]
for i = 0, ..., k − 1 and those integrals added, then we get the equation,

k∑
i=0

∫ ti+1

ti
kg(s)ds =

k∑
i=0

∫ ti+1

ti
Gu

2
√
EG

dv
ds −

Ev

2
√
EG

du
ds ds+

k∑
i=0

∫ si+1

si
dκi

ds ds.

Where κi are a group of differentiable functions that measure in each interval the
positive angle from xu to α′(t). With that equation, the Gauss-Green theorem can
be applied to the equation. The Gauss-Green theorem combined with the Gauss
formula for F = 0 allows us to state that∫∫

x−1(R)
( Ev

2
√
EG

)v + ( Gu

2
√
EG

)ududv = −
∫∫
R
Kdσ

By using the theorem of turning tangents, a theorem that states that the cumu-
lation of the angle of the tangent vector to α with any given direction is equal to
2π, we can state that

k∑
i=0

∫ si+1

si
dκi

ds ds = ±2π −
k∑
i=0

θi.

Because α is positively oriented, the sign for 2π would be a plus. With that, we
can put all the information together and get the equation,

k∑
i=0

∫ ti+1

ti
kg(s)ds+

∫∫
R
Kdσ +

∑k
i=0 θi = 2π �

This theorem makes the Gaussian curvature to be a topological invariant of a
region within a surface. A corollary of Gauss-Bonnet will now be presented.

Corollary 5.5. If R is a simple region of S then
k∑
i=0

∫ si+1

si
kg(s)ds+

∫∫
R
Kdσ +

k∑
i=0

θi = 2π
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We will now present the global version of Gauss-Bonnet without proof. More
information can be found in both do Carmo and Chase.

Theorem 5.6 (Gauss-Bonnet (Global)). Let R ⊂ S be a regular region of an
oriented surface and let C1, ..., Cn be the closed, simple, piecewise, regular curves
which form the boundary ∂R. Suppose that each Ci is positively oriented and let
θ1, ..., θp be the set of all external angles of the curves C1, ..., Cn. It follows that

n∑
i=1

∫
Ci
kg(s)ds+

∫∫
R
Kdσ +

p∑
l=1

θi = 2πχ(R).

where s is the arc length of Ci and χ(R) is the Euler characteristic of R.

All definitions and theorems in this section were based off of do Carmo, section
4-5. More information on Gauss-Bonnet can be found in both do Carmo and in
Chase.

6. Completeness and Hopf-Rinow

This section will be dedicated towards the introduction of the concepts of com-
pleteness and the proving of the Hopf-Rinow theorem: that for any two points on
a complete surface, there exists a minimal geodesic connecting them. To do this,
we will first introduce the concept of the exponential map, use that to help define
what a complete surface is, present a distance function on smooth surfaces, present
a few facts about distance, and then proove Hopf-Rinow.

Definition 6.1. Let p ∈ S and let v ∈ Tp(S) such that v is a nonzero vector. The
exponential map is the unique geodesic expp : (−ε, ε) → S with expp(0) = p and
exp′p(0) = v. expp(v) = γ(l, v) and exp(0) = p.

Note that the existence of this map is a consequence of Gauss-Bonnet.
While we have achieved many important results so far, we need to restrict the

type of surface analyzed in order to prove global theorems such as Hopf-Rinow and
Bonnet’s theorem. To do this, we will introduce the concept of complete surfaces
using a definition from do Carno.

Definition 6.2. A regular surface S is said to be complete when for every point
p ∈ S, any parametrized geodesic γ : [0, ε) → S of S, starting from p = γ(0), may
be extened into a parametrized geodesic γ : R→ S defined on the entire line R.

Equivalently, S is complete when for every p ∈ S, the mapping expp is defined
for every v ∈ Tp(S).

Here are some examples of complete surfaces:

Example 6.3. ’

• A sphere is an example of a complete surface. The great circles that are its
geodesics can be extened to include the whole number line.

• A plane is an example of a complete surface. The lines that are its geodesics
can be extended to include the whole number line.

• A cone without its vertex is not a complete surface becaues any geodesic
that is fully extended will have to reach the vertex.

Another important concept is the idea of intrinsic distance.

Definition 6.4. The distance, for p, q ∈ S, d(p, q) = inf{αp,q} where α is a piece-
wise differentiable curve joining p to q.
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A few interesting properties of complete surfaces will now be presented without
proof. Proofs for these propositions can be found in 5-3 of do Carmo. Note that S
is a regular, connected surface.

Proposition 6.5. Given two points p, q ∈ S, there exists a parametrized piecewise
differentiable curve joining p to q.

Proposition 6.6. The distance function has the following properties:

(1) d(p, q) = d(q, p)
(2) d(p, q) + d(q, r) ≥ d(p, r)
(3) d(p, q) ≥ 0
(4) d(p, q) = 0⇔ p = q

Proposition 6.7. A topologically closed surface S ⊂ R3 is complete.

Corollary 6.8. A compact surface S ⊂ R3 is complete.

Theorem 6.9 (Hopf -Rinow). Let S be a complete surface. Given two points,
p, q ∈ S, there exists a minimal geodesic joining p to q.

Proof. Let B(0) ∈ Tp(S) be a disc of radius β, centered in the origin of the tangent
plane and contained in a neighborhood U ⊂ Tp(S), where expp is a diffeomorphism.
Note that the boundary of expp(B(0)) is compact because it is the continuous image
of the compact set B(0).

Consider the geodesic γ(s) = expp(sv) such that s is arc length. If γ(r) = q,
then γ is a geodesic. This can be done on a case by case basis. �

Thus, we have established that for any two points on a complete surface there
exists a geodesic joining. That will be essential to proving Bonnet’s Theorem.

7. Varations of Arc Length

The final concepts needed to prove Bonnet’s Theorem come from Variations of
Curves. We will first define what a variation is: a map of sister curves that go
alongside an original curve. Subsequently, we will define an arc length dependent
function L in order to compare the arc length of various curves. We will then
conclude this section by proving some mathematical facts about L, the derivatives
of L, and its relation to Geodesics. Specifically, the relationship between L′ and
geodesics (Prop 7.9) and the relationship between L′′ and Gaussian Curvature
(Prop. 7.12). These propositions and lemmas will be the final foundation needed
to prove Bonnet’s theorem.

Definition 7.1. Let α : [0, l]→ S be a regular parametrized curve where s ∈ [0, l]
is the arc length. A variation of α is a differentiable map such that
h(s, 0) = α(s) for s ∈ [0, 1].
A variation ht = h(s, t) is proper if
h(0, t) = α(0) and h(l, t) = α(l) for any t ∈ (−ε, ε).

Essentially, a variation of α is a group of curves that goes side by side with α.
The variation is proper if all the curves begin and end at the same point. To help
visualize the concept, a graphical representation of a variation will be given.
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This picture shows three curves in a variation of the curve f(u) = (5cos(u), 5sin(u), 0).
Note that this is a variation if h(u, 0) = f(u) and that this variation is improper
because for the two other curves on this graph, their endpoints do not match f(0)
and f(l).

Another definition will be given.

Definition 7.2. Let h be a variation α. the differentiable vector field V is defined
as
V (s) = ∂h

∂s (s, 0).

An interesting proposition immediately follows from these two definitions.

Proposition 7.3. Let V (s) be a differentiable vector field along a parametrized
regular curve α : [0, l] → S. It follows that there exists a variation h : [0, l] ×
(−ε, ε)→ S such that V (s) is the variational vector field of h and if V (0) = V (1) =
0, then h can be chosen to be proper.

Proof. This proof is done by first showing that there exists some δ > 0 such that if
| v |< δ, then v ∈ Ta(s)(S), then expa(s) v is well defined for s ∈ [0, l]. Subsequently,

a geodesic can be created such that V (0) = V (l) = 0. This shows that h is
proper. �

In order to compare the arc length of the original curve, which is equal to h0,
with other variations, we will define a function L : (−e, e)→ R such that:

L(t) =
∫ t
0
| ∂h∂s (s, t) | ds.

The study of L in a neighborhood of t = 0 will tell us about the arc length and
how it behaves in curves near α. A few lemmas needed to prove facts about L will
now be presented.

Lemma 7.4. The function L is differentiable in a neighborhood of t = 0 and the
derivative can be found by differentiation under the integral sign.

Proof. Because h is parametrized by arc length, | ∂h∂s |= 1. Because [0, l] is compact,
it follows there exists a δ > 0 such that

∂h
∂s is nonzero for s ∈ [0, 1] and | t |< δ.
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Because the absolute value of a nonzero differentiable function is differentiable,
L is differentiable for | t |< δ. Additionally, there exists a calculus theorem such
that,

L′(t) =
∫ t
0
∂
∂t |

∂h
∂s | ds. �

Two more Lemmas will be presented that describe the behavior of vector fields.

Lemma 7.5. Let w(t) be a differentiable vector field along the parametrized curve
α and let f : [a, b]→ R be a differentiable function. It follows that

D
dt (f(t)w(t)) = f(t)Dwdt + df

dtw(t).

Proof. One can simply note that the covariant derivative is the tangential com-
ponent of the usual derivative. It is then simple calculus from there to show the
lemma. �

The following lemma has a similar proof to the previous one.

Lemma 7.6. Let v(t) and w(t) be differentiable vector fields along α. It follows
that

d
dt (v(t) · w(t)) = (Dvdt · w(t)) + (v(t) · Dwdt ).

The next Lemma will be presented without proof in the interests of time, but a
proof can be found in do Carmo, section 5-4.

Lemma 7.7. Let H : [0, l]× (−ε, ε)→ S be a differentiable map. It follows that
D
∂s

∂h
∂t = D

∂t
∂h
∂s .

We can now compute the first derivative of L at t = 0.

Proposition 7.8. Let h be a proper variation of the curve α and let V (s) = ∂h
∂t be

the variational vector field of h. Then:

L′(0) = −
∫ t
0
A(s) · V (s)ds where A(s) = ( D∂s )(∂h∂s ).

Proof. If t ∈ (−δ, δ), then Lemma 1 gives us:

L′(t) =
∫ t
0
∂
∂t |

∂h
∂s | ds.

Using Lemmas 3 and 4 we get:

L′(t) =
∫ t
0

( D
∂s

∂h
∂t×

∂h
∂s )

∂h
∂s

ds.

Because | ∂h∂s |= 1 at (s, 0), it follows that

L′(0) =
∫ t
0
D
∂s

∂h
∂t ×

∂h
∂s ds.

By applying Lemma 3 once more, we get

L′(0) = −
∫ t
0
D
∂s

∂h
∂s ·

∂h
∂s ds. �

Note that A is called the acceleration vector of a curve α and its norm is the
absolute value of the geodesic curvature of α. Additionally, if h is improper, then
the formula would be the second equation.

An interesting consequence of this Proposition is the following:

Proposition 7.9. A regular parametrized curve α where the parameter s is the arc
length of α, is a geodesic if and only if for every proper variation h of α, L′(0) = 0.

Proof. Because the acceleration, A, of a geodesic is zero, the only if part is auto-
matically true.
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If we have L′(0) = 0 for every proper variation of α, then we can create a
variation corresponding to the vector field V (s) = f(s)A(s). It can then be shown
algebraically that A(s) = 0. It follows that L′(0) = 0. Thus, the proposition is
satisfied. �

We now have a mutual dependence relation between geodesic curves and L.
From now on, we will only talk about proper variations of geodesics γ parametrized
by arc length. Additionally, we will now refer to orthogonal variations where the
variational field V satisfies V (s) · γ′(s) = 0.

We will now find how to compute L′′(0). To do this, we will present two lemmas
and then a proposition. The two lemmas will be presented without proof due to
space constraints, but proofs can be found in do Carmo. These statements will
provide the final groundwork needed to prove Bonnet’s theorem.

Lemma 7.10. Let f be a parametrization with parameters u, v at some point p ∈ S
of regular surface S and let K be the Gaussian Curvature of S. It follows that

D
∂v

D
∂ufu −

D
∂u

D
∂vfu = K(fu × fv)× fu.

Lemma 7.11. Let h be a differentiable mapping and let V be a differentiable vector
field along h. It follows that, if K(s, t) is the curvature of S at the point h(s, t):

D
∂t

D
∂sV −

D
∂s

D
∂tV = K(s, t)(∂h∂s ×

∂h
∂t )× V .

Proposition 7.12. Let H be a proper orthogonal variation of a geodesic γ parametrized
by the arc length s. Let V = ∂dh

∂dt be the variatioal vector field of h. Then

L′′(0) =
∫ t
0
(| D∂sV |

2 −K | V |2)ds
where K is the Gaussian curvature of S at γ(s) = h(s, 0).

Proof. By proposition 2, we get

L′(t) =
∫ t
0

D
∂s

∂h
∂t ·

∂h
∂s

( ∂h
∂s ·

∂h
∂s )

1
2
ds.

If we let t ∈ (−δ, δ), then by Lemma 1 we get,

L′′(t) =
( D
∂s

∂h
∂t ·

∂h
∂s )

2

( ∂h
∂s ·

∂h
∂s )

3
2
ds

Because γ is a geodesic and because the variation is orthogonal, (∂h∂s ·
∂h
∂t = 0 for

t = 0, it follows that,

L′′(0) =
∫ t
0
d
dt (

D
∂s

∂h
∂t ·

∂h
∂s )ds.

when s = 0. Through some additional algebra, one can get L′′(0) into the form,

L′′(0) =
∫ t
0
(| D∂sV (s) |2 −K | V (s) |2)ds.

�

This expression L′′(0) is called the second variation of arc length.

8. Bonnet’s Theorem

Now, with all of the needed background, we can now prove Bonnet’s Theorem.

Theorem 8.1. Let the Gaussian curvature K of a complete surface S satisfy the
condition
K ≥ δ > 0
It follows that S is compact and the diameter ρ of S satisfies the inequality
ρ ≤ π√

δ
.
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Proof. Let S be complete. By Hopf-Rinow, it follows that, given two points p, q ∈ S,
there exists a minimal geodesic γ joining p to q. We will show that the length
l = (p, q) of this geodesic satisfies the inequality
l ≤ π√

δ
.

By contradiction, assume that l > π√
δ
. Consider a variation of the geodesic γ

such that w0 is a unit vector of Tγ(0)(S) such that w0 ·γ′(0) = 0 and let w(s) be the
parallel transport of w0 along γ. It follows that | w(s) |= 1 and that w(s)·γ′(s) = 0.
Now consider the vector field V (s) such that
V (s) = w(s)sin(πl s).
Because V (0) = V (1) = 0 and V (s) · γ′(s) = 0, it follows that V (s) determines

a propoper, orthogonal variation of γ. By proposition 4,

L′′V (0) =
∫ t
0
(π

2

l1 cos
2(πl s)−Ksin

2(πl s))ds

Because we assumed l > π√
γ , it follows that K ≥ γ > π2

l2 , and we get

L′′V (0) < π2

l2

∫ t
0
cos( 2π

l s)ds = 0.
Thus, there exists a variation of γ where L′′(0) < 0. Because γ is a geodesic, it

follows that any variation of γ should have L′′(0) ≥ 0. That is a contradiction.
Therefore, because, for any p, q ∈ S, d(p, q) ≤ π√

δ
, we get that S is bounded and

that its diameter is ρ ≤ π√
γ . Because S is complete and bounded, it is compact. �

That is Bonnet’s theorem; that any Surface with a positive Gaussian curvature
that is larger than a surface’s radius is compact.

9. Applications of Bonnet’s Theorem

While not as famous as the Theorema Egregium or Gauss-Bonnet’s theorem,
Bonnet’s theorem is an important statement that is used in Differential Geometry.
Bonnet’s theorem is used in multiple different global theorems of curves, it can be
used to show that any complete surface with a vanishing Gaussian curvature is a
plane or a cylinder, and it can be used to prove Hilbert’s theorem: a theorem that
states there is no complete regular surface in R3 with constant negative Gaussian
curvature. Proofs for these theorems can be found in sections 5-8 and 5-11 of
do Carmo. It is clear that Bonnet’s theorem both stands on its own and is also
important for proving other theorems in Differential Geometry. Especially when
one includes other mathematical uses for Bonnet’s theorem, one sees an important
theorem that deserves attention.
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