
SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY

PARKER HAVIZA

Abstract. This paper introduces three mathematical methods of sharing en-

crypted information: the Pohlig-Hellman Key Exchange and the ElGamal and

RSA cryptosystems. These systems are based on the hardness of integer fac-
torization and the Discrete Logarithm Problem. Definitions of these problems

and attacks against these cryptosystems are discussed. This paper assumes no

prior experience with cryptography or modular arithmetic and builds up from
basic definitions.

Contents

1. Groundwork 1
1.1. General Concepts 1
1.2. Essential Formulas and Algorithms 2
2. Discrete Logarithm Problem 5
2.1. Collision Algorithms 5
2.2. Pohlig-Hellman Algorithm 6
3. Cryptosystems 7
3.1. Diffie-Hellman Key Exchange 7
3.2. ElGamal 8
3.3. RSA 8
4. Finding Prime Numbers 9
4.1. Primality Testing 9
4.2. Factorization 10
Acknowledgements 11
References 11

1. Groundwork

Before explaining the fundamental problems of cryptography or exploring the
mathematics of individual cryptosystems, it will be helpful to cover some basic
concepts which form a framework for later algorithms.

1.1. General Concepts.

Definition 1.1. A finite commutative ring R is a finite set with two operations,
denoted + (addition) and ? (multiplication). Both operations are commutative and
associative, and are linked by the distribution property

a ? (b+ c) = a ? b+ a ? c for a, b, c ∈ R.

The set contains identity elements for both operations. The set also contains addi-
tive inverses.

1



2 PARKER HAVIZA

The basis for all calculations in this paper is modular arithmetic, also known
informally as clock arithmetic for the way it describes the addition of times of day.

Definition 1.2. Let a, b,m be integers with m positive. We call m the modulus.
We say a and b are congruent modulo m if

a = b+mk for some k ≥ 0.

We express this relation with the notation

a ≡ b (mod m).

Proposition 1.3. If a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m) then

a1 ± b1 ≡ a2 ± b2 (mod m) and a1 · b1 ≡ a2 · b2 (mod m).

Proof. By definition, a1 = a2 +mk and b1 = b2 +mj for some m, j ≥ 0. Then we
have

a1 ± b1 ≡ a2 ± b2 +m(k ± j) ≡ a2 ± b2 (mod m)
and

a1 · b1 ≡ a2 · b2 +m(b2k + a2j +mkj) ≡ a2 · b2 (mod m). �

Definition 1.4. The ring of integers modulo m is the set

{0, 1, ..., m− 1}
with addition and multiplication operations mod m. It is denoted Z/mZ.

Definition 1.5. A finite field is a finite ring with a multiplicative inverse for every
element in the set except zero.

Definition 1.6. The inverse of a non-zero integer a (mod p) is the unique integer
denoted a−1 that satisfies

a · a−1 ≡ 1 (mod p).

To “divide” both sides of an equation by a is to multiply both sides by a−1.

Definition 1.7. A unit is an element of a ring that has a multiplicative inverse.
The group of units modulo m is denoted (Z/mZ)∗.

1.2. Essential Formulas and Algorithms. The following formulas and algo-
rithms are essential for later proofs.

Algorithm 1. (Euclidean Algorithm) Assume without loss of generality that for
integers a and b, a > b. Let r0 = a and r1 = b. Repeat the following until ri+1 = 0:
(1) Starting with i = 1, divide ri−1 by ri and denote the remainder as ri+1

(2) Increment i

Proposition 1.8. The algorithm terminates when ri = gcd(a, b).

Proof. For some integers qi and the remainder after division ri we can write the
equations

a = bq1 + r2, b = r2q2 + r3, ..., rt−2 = rt−1qt−1 + rt, rt−1 = rtqt

denoting the greatest i as t. Note that ri > ri+1, so eventually we reach an ri+1

such that ri+1 = 0 = rt+1. We can write the iteration step

ri+1 = ri−1 − riqi



SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY 3

and see that a common divisor of ri−1 and ri is also a divisor of ri+1. Similarly, a
common divisor of ri and ri+1 is a divisor of ri−1. It follows that

(1.9) gcd(ri−1, ri) = gcd(ri, ri+1) for all i = 1, 2, 3...

Since rt−1 = rtqt + 0 we have

gcd(rt−1, rt) = gcd(rtqt, rt) = rt.

Using i = 1 and (1.9) we have

gcd(r0, r1) = gcd(a, b) = rt.

�

Proposition 1.10. (Extended Euclidean Algorithm) For positive integers a and
b, there are always integers u and v such that

au+ bv = gcd(a, b).

Proof. Note that r1 = b and r2 = 1 · a− q1 · b are integers. The iteration step tells
us

ri+1 = ri−1 − riqi.
By induction we see that ri−1 and ri are linear integer combinations of a and b. In
other words, for some integers x1, x2, y1, and y2 we can write

ri = ax1 + by1 and ri−1 = ax2 + by2.

Substituting these equations into the iteration step we have

ri+1 = ri−1 − riqi = ax2 + by2 − (ax1 + by1)qi = a(x2 − y1qi) + b(x2 − y1qi).
This gives ri+1 as a linear integer combination of a and b. Denote ui+1 = x2− y1qi
and vi+1 = x2 − y1qi. This means that rt = gcd(a, b) is also a linear integer
combination of a and b with integers ut and vt. �

Proposition 1.11. Let p be prime. Then the ring of integers modulo p is a field
(every non-zero integer has a multiplicative inverse).

Proof. If a ∈ Z/pZ then gcd(a, p) = 1. The Extended Euclidean Algorithm tells us
that there are integers u, v such that

1 = au+ pv.

This can be rewritten in the modular form

au = 1− pv ≡ 1 (mod p)

So there exists an inverse u for every non-zero a in the ring. �

A ring of integers modulo a prime number is called a field of prime order and is
denoted Fp.

Perhaps the most important theorem underlying modern cryptography is Fer-
mat’s Little Theorem, which is the basis for many proofs that will follow in this
paper. It states the following:

Theorem 1.12. (Fermat’s Little Theorem) For any prime number p and integer
a,

(1.13) ap−1 ≡
{

1 (mod p) p - a
0 (mod p) p | a



4 PARKER HAVIZA

Proof. If p | a then a ≡ 0 (mod p) so we will look at the case where p - a. Then the
list

a, 2a, 3a, ..., (p− 1)a (mod p)
will contain p − 1 distinct elements. There are p − 1 distinct numbers between 1
and p− 1, so this list must contain the same elements as

1, 2, ..., p− 1 (mod p).

These lists may not be in the same order, but the products of their elements are
the same. We equate these products to see that

a · 2a · ... · (p− 1)a ≡ 1 · 2 · ... · (p− 1) (mod p).

After factoring we see that

ap−1(p− 1)! ≡ (p− 1)! (mod p).

And noting that (p−1)! is non-zero and hence invertible mod p by Proposition 1.11
we obtain

ap−1 ≡ 1 (mod p). �

We can easily calculate inverses mod p using Theorem 1.12. Note that

a · ap−2 ≡ ap−1 ≡ 1 (mod p).

Thus the inverse can be found by computing ap−2 (mod p), so we can easily perform
division in a field of finite prime order.

If we are working modulo a composite number in the ring Z/(pq)Z where p, q
are distinct primes, we can still make use of Fermat’s Little Theorem with Euler’s
Formula.

Theorem 1.14. (Euler’s Formula) Given two distinct primes p and q, let

g = gcd((p− 1)(q − 1)).

Then
a(p−1)(q−1)/g ≡ 1 (mod pq).

Proof. Considering the equation mod p we have

a(p−1)(q−1)/g = (ap−1)(q−1)/g ≡ 1(q−1)/g ≡ 1 (mod p)

Repeating this process mod q shows that a(p−1)(q−1)/g ≡ 1 (mod q). Then because
a(p−1)(q−1)/g − 1 is divisible by both p and q, it is divisible by pq. �

Similar formulas can be derived when the modulus can be factored into more than
two primes. This is not necessary for cryptographic purposes, since the modulus
is usually chosen as the product of two large primes in order to make factorization
computationally difficult.

The Chinese Remainder Theorem is a way of solving a system of equations in
modular arithmetic.

Algorithm 2. Let the input of this algorithm be integers a1...at and m1...mt where
gcd(mi,mj) = 1 for i 6= j. Let x1 = a1.
Repeat the following steps for 2 ≤ i ≤ t:

(1) Let integer yi satisfy

(1.15) yi ≡ (m1m2 · · ·mi−1)−1(ai − xi−1) (mod mi).



SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY 5

(2) Let

(1.16) xi = xi−1 + yi(m1m2 · · ·mi−1).

Complete the algorithm by outputting xt.

Proposition 1.17. Denote x as the output of Algorithm 2. Then x ≡ ai (mod mi)
for all 1 ≤ i ≤ t and is uniquely determined mod m1m2...mt.

Proof. Plugging (1.15) into (1.16) for some integer qi we have

xi = xi−1 + (ai − xi−1) +miqi(m1m2 · · ·mi−1) = ai +miqi(m1m2 · · ·mi−1).

This simplifies to
xi ≡ ai (mod mi).

Note then that (1.16) can be rewritten as

xi ≡ xi−1 ≡ ai−1 (mod mi−1).

Hence, by induction on i, xi satisfies xi ≡ aj (mod mj) for all j < i. �

2. Discrete Logarithm Problem

Cryptography relies on operations known as trapdoor functions which are easy to
compute but take prohibitively long to invert using modern computing power. One
example of a potential trapdoor function is multiplying two large primes and then
attempting to recover the product’s original factors. Many modern cryptosystems
rely on the Discrete Logarithm Problem, or DLP, which is a trapdoor function.

Definition 2.1. A primitive root g is a number such that every element of Fp can
be written as g raised to some power.

Thus, since gp−1 ≡ 1 (mod p) by Fermat’s Little Theorem, the list

g, g2, g3, ..., gp−1

is a list of every element in F∗p, the set of units of Fp.
The Discrete Logarithm Problem is the question of finding an exponent x such

that

(2.2) gx ≡ h (mod N)

for integers g and N . For cryptographic purposes, we are interested in the Discrete
Logarithm Problem where g is a primitive root and N is either prime or the product
of primes.

2.1. Collision Algorithms. A collision algorithm is a brute-force method of solv-
ing an equation. The general strategy in collision algorithms is to create two lists
and find a match between them. We can apply collision algorithms to the DLP.

Algorithm 3. (Shank’s Babystep-Giantstep Algorithm) Choose an integer n such
that

√
N < n < N where N is the modulus of the particular Discrete Logarithm

Problem. Generate the lists

e, g, g2, g3, ..., gn “babystep”

and
h, h · g−n, h · g−2n, ..., h · g−n

2
“giantstep”.

Find a match between these lists of the form gi = h · g−jn.



6 PARKER HAVIZA

Proposition 2.3. Given a match, x = i+ jn solves the discrete logarithm gx ≡ h
(mod N).

Proof. For integers q, r let x = nq + r where 0 ≤ n < r. Then because 1 ≤ x < N
and n >

√
N we have

q =
x− r
n

<
N

n
<
n2

n
< n.

Rewriting the Discrete Logarithm Problem we have

gx = gr−nq = h

So,
gr = h · gnq

where gr is in the “babystep” list and gqn is in the “giantstep” list. Thus this
algorithm will always return a match and have a solution of the form x = i+jn. �

Another collision algorithm uses random numbers to create a high probability of
finding a match in relatively few steps.

Proposition 2.4. Write the Discrete Logarithm Problem letting x = y− z so that

gy ≡ h · gz (mod p)

for prime p and primitive root g. Choose random values of y and z to form the lists

(2.5) gy1 , gy2 , ..., gyn 1 < yi < p− 1

and

(2.6) h · gz1 , h · gz2 , ..., h · gzn .

Then for randomly generated yi and zj of a matching pair of numbers, x = y − z
has a 1− e−n2/(p−1) chance of solving the discrete logarithm problem gx ≡ h (mod
p).

Proof. The list (2.5) is a size-n subset of the size-(p−1) set {g1, g2, ..., gp−1} because
g is a primitive root. The probability of getting a match between (2.5) and at least
one member of (2.6) is

1-Pr(No match)=1-(
p− 1− n

n
)n = 1− (1− n

p− 1
)n.

After noting that e−x ≥ 1− x this gives us the lower bound 1− e−n2/(p−1). �

2.2. Pohlig-Hellman Algorithm. The ability to factor p − 1 is crucial in the
Pohlig-Hellman Algorithm for solving the DLP.

Algorithm 4. Given the discrete logarithm problem gx ≡ h (mod p) for prime p
and primitive root g, suppose L = p− 1 can be factored in the form

L = qk11 , qk22 , ..., qkt
t .

For 1 ≤ i ≤ t let gi and hi be defined by

gi = gL/q
ki
i and hi = hL/q

ki
i .

Solve the t discrete logarithms of the form

gyi

i ≡ hi (mod p)



SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY 7

using Shank’s Algorithm or by using the Pohlig-Hellman algorithm again. Use the
Chinese Remainder Theorem to find x by solving

x ≡ y1 (mod qk11 ), x ≡ y2 (mod qk22 ), ..., x ≡ y1 (mod qkt
t ).

Proposition 2.7. This x solves the discrete logarithm gx ≡ h (mod p).

Proof. Let x ≡ yi (mod qki
i ). This means x = yi + qki

i ji for some ji. Then we have

(gx)L/q
ki
i (mod p) ≡ (gL/q

ki
i )yi · gLji (mod p)

≡ (gi)
y
i · 1

j
i (mod p)

≡ hi (mod p)

≡ hL/q
ki
i (mod p).

Writing (gx)L/q
ki
i ≡ hL/q

ki
i (mod p) in logarithmic form we have

(2.8) (L/qki
i ) · x ≡ (L/qki

i ) · logg(h) (mod p).

Since the greatest common divisor of all L/qki
i is 1, the Extended Euclidean Algo-

rithm tells us there are integers c1...ct which satisfy

(2.9) L/qk11 · c1 + L/qk22 · c2 + ... + L/qkt
t · ct = 1.

If we multiply both sides of 2.8 by ci and sum over 1 ≤ i ≤ t we get
t∑
i=1

L/qki
i · ci · x ≡

t∑
i=1

L/qki
i · ci · logg(h) (mod p).

Using (2.9) we have
x ≡ logg(h) (mod p). �

3. Cryptosystems

Cryptography is the study of privately transmitting a message across potentially
open channels. Encryption is the process of obscuring a message from everyone
except the intended recipient, who decrypts the message. Together encryption and
decryption algorithms form a cryptosystem. The following cryptosystems are based
on the difficulty of either factoring a product of large primes or solving the discrete
logarithm problem.

3.1. Diffie-Hellman Key Exchange.

Definition 3.1. A key is a secret number used in a cryptosystem when encrypt-
ing and decrypting messages. Without it, messages are hard to recover from the
encrypted text.

One major question in cryptography deals with how to establish a secret key
between two people who can only communicate across open channels. One method
was proposed by Whitfield Diffie and Martin Hellman in 1978 [3].

Algorithm 5. (Diffie-Hellman Key Exchange) Let prime p and primitive root g
be known.
Person A: choose a secret integer α and send a ≡ gα (mod p). Calculate

bα (mod p).



8 PARKER HAVIZA

Person B choose a secret integer β and send b ≡ gβ (mod p). Calculate

aβ (mod p).

Proposition 3.2. Persons A and B now share the same key.

Proof. It must be shown that bα (mod p) ≡ aβ (mod p). This is the shared key.

bα (mod p) ≡ (gβ)α (mod p)

≡ (gα)β (mod p)

≡ aβ (mod p) �

To uncover the key, a third person intercepting the publicly sent information
would have to be able to find α from gα (mod p) or β from gβ (mod p). This is
the Discrete Logarithm Problem. Numbers in cryptosystems are chosen sufficiently
large that it would take decades to find these values with current algorithms. An
attacker could also find a way of finding gαβ from either gα or gβ , but no efficient
method for this is known.

3.2. ElGamal. The ElGamal cryptosystem is a means of encrypting and decrypt-
ing a secret message m.

Algorithm 6. Encryption Scheme: Let prime p and primitive root g be known.
Person A: Select a random private key α and distribute a public key a ≡ gα (mod
p).
Person B: choose a random private key k and private message m and send

c1 ≡ gk (mod p) and c2 ≡ mak (mod p).

Proposition 3.3. The message can be decrypted by computing

m ≡ (cα1 )−1 · c2 (mod p).

Proof. Person A knows α, so they can calculate

(cα1 )−1 · c2 ≡ (gak)−1 · (mak) (mod p)

≡ (gak)−1 · (m(ga)k) (mod p)

≡ m (mod p) �

Again, the strategy in breaking this encryption lies in the Discrete Logarithm
Problem of discovering α from gα.

3.3. RSA. Another cryptosystem is RSA, introduced by Rivest, Shamir, and Adel-
man in their 1978 paper [2]. The security of this system is based on the factoring
of the product of large primes.

Algorithm 7. Person A: distribute a product of primes N = pq and an encryption
exponent e such that gcd(e, (p− 1)(q − 1)) = 1. (We denote the inverse of e as d.)
Person B: choose a secret message m and send

c ≡ me (mod N).

Person A: compute d which by definition satisfies

ed ≡ 1 (mod (p− 1)(q − 1)).



SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY 9

Proposition 3.4. Then the message can be decoded with the formula

m ≡ cd (mod N).

Proof. By the Euclidean Algorithm there exists integers d and k such that de =
1− (p− 1)(q − 1) · k, so we know that there exists an inverse for every e.

cd ≡ mde (mod N)

≡ m1−(p−1)(q−1)·k (mod N)

≡ m · (mp−1mq−1)−k (mod N)

≡ m · (1 · 1)−k (mod N)

≡ m (mod N) �

It takes a lot of computing power to find d for a large p, q unless the factorization
of N is known, making the sent message transparent for the publisher of N but not
for other recipients of the encoded text.

4. Finding Prime Numbers

4.1. Primality Testing. If large primes are necessary for these cryptosystems,
how do we find them? It is necessary to determine whether a randomly chosen
large number is prime. It is only necessary to look at large odd numbers because
the only even prime is 2.

Definition 4.1. A witness a for the compositeness of a number n is an integer
such that

an 6≡ a (mod n).

Indeed, multiplying both sides of (1.13) by a gives an ≡ a (mod n) for prime n.
However, for some integers a Fermat’s Little Theorem is still satisfied for composite
n. This brings us to the Miller-Rabin Witness Test.

Algorithm 8. (Miller-Rabin Witness Test) Given an n written as n − 1 = 2kq
for odd integer q, choose an integer a such that a - n, and check the following
conditions:

(1) aq ≡ 1 (mod n)
(2) a2jq ≡ −1 (mod n) for some j < k

Stop test if a number violating one of these conditions is found.

Proposition 4.2. If n is prime, both conditions are true.

Proof. Consider the list

aq, a2q, a4q, ..., a2kq.

Note that if n is prime a2kq ≡ an−1 ≡ 1 (mod n) by Fermat’s Little Theorem. Each
number is the square of the previous number with the last term being 1. Thus
either the first term in the list is 1, or some number in the list is 1 when squared.
In other words, if aq 6≡ 1 (mod n) there is an integer b such that b 6≡ 1 (mod n)
and b2 ≡ 1 (mod n), hence b = −1. So for some j < k, a2jq ≡ −1 (mod n). �



10 PARKER HAVIZA

To test whether a number is prime, the Miller-Rabin test chooses several values
for a in the hopes of discovering a witness for the compositeness of n (a number
that violates one of the conditions). The chance of n being prime improves with
every non-witness. This test does not conclusively prove primality, but can show
that n is likely to be prime.

4.2. Factorization. Modern cryptography relies on numbers that are hard to fac-
tor. If the modulus used in a cryptosystem can be factored, the corresponding
cryptosystem can be cracked. The simplest way to factor a large number is divide
it by every integer starting with 1, hoping to get an integer. The numbers that are
used in cryptosystems are sufficiently large to make this approach impossible with
modern computing power. There are other methods to consider.

Proposition 4.3. (Pollard’s p-1 Method) Given N = pq for p and q prime, choose
L such that p − 1 | L and q − 1 - L and choose a such that ak 6≡ 1 (mod q) where
k ≡ L (mod q − 1). Then p can be computed by the formula

p = gcd(aL − 1, N).

Proof. By the definition of divisor, L = i(p− 1) = j(q− 1) + k for nonzero integers
i, j, k where 1 ≤ k < q − 1. Using Fermat’s Little Theorem shows that

aL = ai(p−1) = (ap−1)i ≡ 1i ≡ 1 (mod p)

and
aL = aj(q−1)+k = (aq−1)jak ≡ 1j · ak ≡ ak (mod q).

From the equations above, we see that p | aL− 1 and q - aL− 1. Thus p =gcd(aL−
1, N). �

If k is small and q is large, there is a good probability that ak 6≡ 1 (mod q) does
not hold for a randomly chosen a. In fact, if p − 1 is a product of small primes it
suffices to check gcd (an! − 1, N) for n = 1, 2, 3... because if p − 1 can be written
as a product of small primes it will divide n! for a small value of n. Thus we see
that Pollard’s Method is a fast factoring method in the case that p− 1 factors into
small primes.

Another method of factoring relies on a very simple formula, X2 − Y 2 = (X −
Y )(X + Y ), which we can adapt to factor N .

Algorithm 9. Given N = pq where p, q are primes, calculate

c = N + b2 for b = 1, 2, 3...

check each c to see if it can be written as z2 (so c is a perfect square). Stop when
a perfect square is found.

Proposition 4.4. If such a c is found, N can be factored as p = z−b and q = z+b.

Proof. N = pq = z2 − b2 = (z − b)(z + b), giving p = z − b and q = z + b. �

As b increases, each calculation takes more computing time. We can try using
multiples of N to improve the efficiency of the algorithm by only checking small b
values. If we look at equations of the form kN = (z− b)(z+ b) then some factor of
N may divide both (z − b) and (z + b). If so, we can check values of the form

c = kN + b2 for b = 1, 2, 3...



SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY 11

to find (z−b) and (z+b). One of these terms will be divisible by k because N = pq,
so we find

p = gcd(N, z − b) and q = gcd(N, z + b)
to complete a factorization of N.

Acknowledgements

It is my pleasure to thank my mentor John Wilmes for his wisdom, guidance,
and patience. This paper was made possible by his strong desire to see me truly
understand the underlying concepts. I would also like to thank Professor Peter
May for organizing an amazing REU and Professor Laszlo Babai for his stimulating
lectures on linear algebra.

References

[1] Jeffrey Hoffstein, Jill Piper and Joseph H. Silverman. An Introduction to Mathematical Cryp-

tography. Springer, 2008.

[2] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Comm. ACM, 21(2):120-126, 1978.

[3] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Information The-
ory, IT-22(6):644-654, 1976.


