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LEONID GLADKOV

Abstract. This paper is an exposition of some classic results in graph theory
and their applications. A proof of Tutte’s theorem is given, which is then
used to derive Hall’s marriage theorem for bipartite graphs. Some compelling
applications of Hall’s theorem are provided as well. In the final section we
present a detailed proof of Menger’s theorem and demonstrate its power by
deriving König’s theorem as an immediate corollary.
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1. Definitions

Before presenting the proofs, we provide some prerequisite definitions from graph
theory. In the definitions given here and later on, we borrow a lot of the language
and notation introduced in the first chapter of Diestel’s classic text [1].

Definition 1.1. Given a set A, we define [A]k :=
)

S ™ A
-- |S| = k

*
.

Definition 1.2. A graph G := (V, E) is a pair of sets V and E ™ [V ]2. Elements of
V are called vertices and elements of E edges. We define V (G) := V and E(G) := E
to refer to these sets.

We write uv for edges { u, v } œ E and say that uv joins the vertices u and v.
Instead of explicitly writing v œ V and e œ E for vertices and edges, we may simply
write v œ G and e œ G.

We call the elements of an edge its ends, and vertices that are joined by an
edge are said to be adjacent. Adjacent vertices are also called neighbors. Similarly,
distinct edges that share an end are adjacent. Sets of pairwise non-adjacent vertices
or edges are independent. Vertices that are joined by an edge are incident with that
edge, and an edge is incident with the vertices it joins. If A, B ™ V and e = ab œ E
such that a œ A and b œ B, then we call e an A–B edge.

A graph is represented visually by points in R2 for elements of V and curves
between pairs of points for elements of E. That is, u, v œ V are joined by a curve
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i� uv œ E. This geometric interpretation is remarkably intuitive and serves as a
powerful aid in reasoning about graphs.

Definition 1.3. Given a graph G = (V, E), we define its order by |G| := |V | and
denote its number of edges by ÎGÎ := |E|.

A graph is called even or odd depending on whether |G| is even or odd.

Definition 1.4. Given G = (V, E) and V Õ ™ V , we define
N

G

(V Õ) :=
)

u œ V \ V Õ -- uv œ E for some v œ V Õ *
.

That is, N
G

(V Õ) denotes the neighbors of vertices in V Õ that lie outside of V Õ. For
v œ V , we define d

G

(v) :=
--N

G

({ v })
-- to be the degree of v in G. (If it is clear which

graph is being referred to, we omit the subscript G.)

Now, having established the rudimentary features of graphs, it is also important
to formalize set-like relations and operations on them:

Definition 1.5. Given graphs H and G, we call H a subgraph of G and write
H ™ G whenever V (H) ™ V (G) and E(H) ™ E(G). The graph G is then called a
supergraph of H. We also express this relation by saying that H lies in G or that
H is in G.

Definition 1.6. Let G and H be graphs. We define G fi H to be the graph with
vertex set V (G) fi V (H) and edge set E(G) fi E(H). Intersections of graphs are
defined in an analagous manner. Given V Õ ™ V (G), the graph G ≠ V Õ is obtained
from G by deleting the vertices in V Õ and any edges incident with these vertices.
As a notational convenience, we also define G ≠ H := G ≠ V (H). Likewise, given
EÕ ™ [V (G)]2, we obtain G ± EÕ from G by deleting or adding the edges in EÕ.

In general, we omit brackets for sets of a single vertex or edge. For example, we
shorten G + { e } to G + e and N

G

({ v }) to N
G

(v).

Definition 1.7. The graphs G1, . . . , G
n

are disjoint if V (G
i

) fl V (G
j

) = ÿ for all
i ”= j.

It is also useful to be able to talk about the portion of a graph over some
particular subset of its vertices:

Definition 1.8. Given G = (V, E) and V Õ ™ V , we define the induced subgraph of
G over V Õ to be

G[V Õ] :=
1

V Õ,
)

uv œ E
-- u, v œ V Õ *2

.

The subgraph relation provides a natural means to discuss maximality and min-
imality with respect to graph properties:

Definition 1.9. A graph G is said to be maximal (minimal) for a given property
(for example, connectedness; see below) if adding (deleting) a vertex or an edge
creates a supergraph (subgraph) that violates the property. As a special case of this,
graphs are called edge-maximal (edge-minimal) for a property if adding (deleting)
an edge between existent vertices creates a graph that violates the property.

We can also talk about (edge-)maximal and (edge-)minimal subgraphs of G if
we restrict ourselves to adding and deleting vertices and edges that lie in G.

We also wish to formalize the notions of paths, cycles, and walks:
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Definition 1.10. A graph P is called a path if V (P ) = { v1, . . . , v
n

} and E(P ) =
{ v

i

v
i+1 | 1 Æ i < n }. A graph C is called a cycle if C = P + v

n

v1 for some path
P . A walk is a path whose vertices may repeat.

We often denote a path by a natural sequence of its vertices: P = v1 . . . v
n

.
We also write v

i

Pv
j

for P
Ë)

v
i

, . . . , v
j

*È
. For example, we can combine these

shorthand notations to express P + v
n

u as v1Pv
n

u. We may also write aPbQc for
aPb fi bQc. The interior of a path P refers to the subgraph v2Pv

n≠1.

Definition 1.11. Given a graph G and A, B ™ V (G), a path P = v1 . . . v
n

™ G is
called an A–B path in G if v1 œ A and v

n

œ B are its only vertices in A fi B.

An a–b path is said to link the vertices a and b. This language brings us to the
notion of connectedness, which is the last topic that must be formalized before we
are able to state and prove the theorems of interest.

Definition 1.12. A graph G is connected if every pair of vertices in V (G) is linked
by a path in G.

Definition 1.13. A component of a graph G is a maximal connected subgraph of
G. The set of components of G is denoted by C

G

.

Definition 1.14. Given a graph G and A, B ™ V (G), we say that S ™ V is an
A–B separator, or, equivalently, that S separates A from B in G, if every A–B path
in G has a vertex in S.

2. Tutte’s theorem

In both practical applications and other branches of mathematics, we often wish
to create pairings in the context of some kind of relationship, whether it be matching
prospective clients with tutors or, as we shall discover later, determining if distinct
partitions of a set can have the same representatives. In graph theory, this problem
reduces to asking whether or not we can assign every vertex to a pair with one of
its neighbors. That is, we attempt to select edges in such a way that every vertex
is incident with exactly one edge in our selection. Then every edge uv that is
selected pairs the vertices u and v. Clearly, any independent set of edges succeeds
in matching at least some vertices: the edges do not have any ends in common, so
each edge determines a pair. For this reason, independent sets of edges are called
matchings:

Definition 2.1. Given a graph G, a matching M in G is an independent subset
of E(G). If every v œ V Õ ™ V (G) is incident with an edge in M then M is called a
matching of V Õ and V Õ is said to be matched by M .

Tutte’s theorem characterizes graphs that contain matchings of their entire ver-
tex set. Before we are able to state the theorem, however, we require an alternative
means of considering matchings.

Definition 2.2. A subgraph H ™ G is spanning if V (H) = V (G).

Definition 2.3. A k-regular graph G satisfies d(v) = k for every v œ V (G).

Definition 2.4. A k-regular spanning subgraph of G is called a k-factor of G.

In fact, 1-factors are intimately related to matchings:
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Proposition 2.5. A graph G contains a matching of V (G) i� it contains a 1-factor.

Proof. Suppose H ™ G is a 1-factor. Then, since every vertex in H has degree 1,
it is clear that every v œ V (G) = V (H) is incident with exactly one edge in E(H).
Thus, E(H) forms a matching of V (G).

On the other hand, if V (G) is matched by M ™ E(G), it is easy to see that the
subgraph H :=

!
V (G), M

"
must be a 1-factor. The subgraph H is spanning by

definition, and since M is a matching of V (G), every v œ V (H) = V (G) is incident
with exactly one edge in E(H) = M . Hence every vertex in H has degree 1. Thus
H is a 1-factor of G. ⇤

We are now ready to state Tutte’s theorem.

Definition 2.6. Given a graph G, we define
q(G) :=

--{ C œ C
G

| C is odd }
-- .

Theorem 2.7 (Tutte’s theorem). A graph G = (V, E) contains a 1-factor i�

q(G ≠ S) Æ |S| for every S ™ V .

The requirement that q(G ≠ S) Æ |S| for every S is henceforth referred to as
Tutte’s condition. We provide a proof of the theorem based on Diestel’s adaptation
[1] of a proof due to Lovász [2]. We begin by demonstrating the easier necessity of
Tutte’s condition as a lemma:

Lemma 2.8. A graph G contains a 1-factor only if q(G ≠ S) Æ |S| for every

S ™ V (G).

Proof. Suppose that G contains a a 1-factor. Then by Proposition 2.5, it contains
a matching M of V (G). For any S ™ V , let C œ C

G≠S

be an odd component. Since
C has an odd number of vertices, these cannot all be matched by edges contained
in C. Hence there must be at least one C–S edge in M , as there can be no edges
between components of G≠S. Thus, there are at least q(G≠S) edges in M between
S and odd components of G ≠ S. All of these edges must be incident with distinct
vertices in S since M is independent. Therefore, |S| Ø q(G ≠ S). ⇤

Next, we prove a lemma which provides alternative criteria for sets that violate
Tutte’s condition in even edge-maximal graphs with no 1-factor. As we shall see,
this lemma is crucial to the proof of Tutte’s theorem that follows.

Lemma 2.9. Let G = (V, E) be an even edge-maximal graph without a 1-factor.

Let S ™ V be such that every component of G ≠ S is complete and every s œ S is

adjacent to every other vertex. Then S satisfies q(G ≠ S) > |S|.

Proof. Suppose, by way of contradiction, that q(G≠S) Æ |S|. We wish to show that
we can then find a matching of V in E. Finding such a matching would violate the
fact that G has no 1-factor (Proposition 2.5). Since |S| is large enough, and every
s œ S is adjacent to every other vertex, we can first select q(G ≠ S) independent
edges joining a vertex from every odd component of G ≠ S with distinct vertices
in S. This leaves an even number of vertices unpaired since |G| is even. These can
then be matched because G[S] and all components of G ≠ S are complete. Hence
we reach the desired contradiction, so q(G ≠ S) > |S|. ⇤

We are now ready to complete our proof of Tutte’s theorem.
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Proof of Theorem 2.7. By Lemma 2.8, it remains to show the su�ciency of Tutte’s
condition. We do so by proving the contrapositive: if G does not contain a 1-factor,
then there exists S ™ V with q(G ≠ S) > |S|.

We first show that G can be assumed edge-maximal with no 1-factor. If G is
not edge-maximal, let us continue to add edges until the resultant supergraph is.
Call this graph GÕ. Suppose we find a set S ™ V which violates Tutte’s condition
in GÕ. Every component in C

G

Õ≠S

is the union of components in C
G≠S

. The
components of G ≠ S whose union is an odd component of GÕ ≠ S cannot all be
even, so q(G ≠ S) Ø q(GÕ ≠ S) > |S|. Thus, S also violates Tutte’s condition in G.
Therefore, we can add edges to any graph G which is not edge-maximal until we
obtain a graph GÕ which is, and finding a set S which violates Tutte’s condition in
G reduces to finding such a set in GÕ.

Therefore, let us suppose that G is edge-maximal without a 1-factor to begin
with. If |G| is odd, it must contain an odd number of odd components, so S = ÿ
satisfies

q(G ≠ S) = q(G) Ø 1 > 0 = |S| .

If |G| is even, then by Lemma 2.9 our task reduces to finding a set S such that
every component of G ≠ S is complete and every s œ S is adjacent to every other
vertex in G. Let

(2.10) S =
)

s œ V
-- N(s) = V \ {s}

*
.

If every component of G ≠ S is complete, then we are done. If not, then there
exists C œ C

G≠S

such that xxÕ /œ C for some vertices x, xÕ œ C. Since C is
connected, we can find a shortest path P ™ C linking x and xÕ. Let x, y, z be
the first three vertices on this path. Since P is a shortest path, xz /œ E. Because
y œ G ≠ S, there exists w œ V \ { y } such that yw /œ E. And since G is edge-
maximal without a 1-factor, the supergraphs G+xz and G+yw contain matchings
M1 and M2, respectively, of G’s entire vertex set. Note that xz œ M1 and yw œ M2.
Now, we construct a maximal path Q = w1 . . . w

n

™ G such that w1 = w, the edge
w1w2 œ M1, and the edges of Q alternate between M1 and M2. Suppose that
w

n≠1w
n

œ M1. Then the maximality of Q implies that the M2 edge at w
n

is not in
G or that it creates a walk if added to Q. In the first case, this edge must be yw as
it is the only M2 edge not in G. In the second, this edge must join w

n

with one of
w1, . . . , w

n≠1, but the M2 edges incident with w2, . . . , w
n≠1 are already in Q ≠ w

n

,
so again the edge must be w

n

w1 = yw. In particular, w
n

= y.
If w

n≠1w
n

œ M2, then adding to Q the M1 edge incident with w
n

would not
create a walk: such an edge would have to join w

n

with one of w1, . . . , w
n≠1, but

the M1 edges at these vertices are already in Q ≠ w
n

. Hence the M1 edge at w
n

must not be in G, and the only such edge is xz. Hence w
n

is x or z.
Depending on whether the last edge of Q is in M1 or M2, we set C = w1Qw

n≠1w1
or C = w1Qw

n

yw1, respectively. We claim that in each case, C is an even cycle
in G + yw such that every second edge of C lies in M2. Recall that the first edge
of Q lies in M1, and its edges alternate between M1 and M2. In the first case, the
last edge of Q lies in M1, so |Q| is odd and |C| = |Q| + 1 is even. In addition, the
edge w

n

w1 = yw œ M2 added to Q to construct C ensures that the alternating
pattern of edges is preserved. Since yw is the only edge added to Q ™ G, we have
that C ™ G + yw. In the second case, the last edge of Q lies in M2, so |Q| is even
and so is |C| = |Q| + 2. Furthermore, w

n≠1w
n

œ M2 implies that w
n

y /œ M2. And
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since yw1 = yw œ M2, we find once again that every second edge of C lies in M2.
Finally, since w

n

= x or z, the edge w
n

y œ G, so the only edge of C not in G is yw.
Hence C ™ G + yw.

Therefore, we may construct a matching M ™ E of V from M2: this can be done
by replacing the M2 edges in C with the other edges in C, which must all lie in G.
But then G would contain a 1-factor (Proposition 2.5), which contradicts the initial
assumption. Hence the set S given by (2.10) must violate Tutte’s condition. ⇤

3. Hall’s marriage theorem

The task of finding matchings is most natural in the context of bipartite graphs,
whose vertex set admits a bipartition such that every edge joins vertices from
di�erent subsets:

Definition 3.1. A graph G = (V, E) is called bipartite if V = A fi B for disjoint
sets A and B and every edge in E is an A–B edge. We express a bipartite graph
with bipartition V = A fi B as G(A, B).

Hall’s marriage theorem completely characterizes bipartite graphs G(A, B) in
which we can find a matching of A or B. In fact, Hall’s theorem is a bipartite
analogue of Tutte’s theorem: if |A| = |B|, then finding a matching of A or B is
equivalent to finding a matching of V (G).

Theorem 3.2 (Hall’s marriage theorem). Let G(A, B) be a bipartite graph. Then

G contains a matching of A i�

--N(S)
-- Ø |S| for all S ™ A.

The requirement that
--N(S)

-- Ø |S| for every S is referred to as the marriage

condition.
We proceed to derive the marriage theorem from Tutte’s theorem, an approach

which may be indirect but one which provides great insight into the relationship
between the two results.

Proof of Theorem 3.2. Clearly, every S ™ A must have enough neighbors in B in
order for the vertices of S to be matched, so

--N(S)
-- Ø |S|. Hence the necessity of

the marriage condition is trivial.
We proceed to derive the su�ciency from the stronger Tutte’s theorem. To do

so, we must ensure that finding a matching of A in G can be reduced to finding a
1-factor, perhaps in some graph GÕ constructed from G. To construct GÕ, we first
replace B with

BÕ =
;

B if G is even
B fi {bú} if G is odd.

In other words, if need be, we add a vertex bú to B to ensure that the resultant
graph is even. The desired graph GÕ is

GÕ = G +
)

bbÕ -- b, bÕ œ BÕ *
.

That is, we add edges to make GÕ[BÕ] complete. Suppose we find a matching
M ™ E(GÕ) of V (GÕ). Let

M Õ = { uv œ M | u œ A or v œ A }.

Since every e œ M Õ must lie in E(G), and every a œ A ™ V (GÕ) is incident with an
edge in M , the subset M Õ forms the desired matching of A in G. Thus, our task
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is to find a 1-factor in GÕ (Proposition 2.5). Therefore, we wish to show that the
marriage condition in G implies Tutte’s condition in GÕ.

Let S ™ V (GÕ). Set S
A

= S fl A and S
B

Õ = S fl BÕ. We can consider the
subtraction G≠S as occurring in two steps: we first remove S

B

Õ and then S
A

. Thus,
we verify Tutte’s condition in two steps. First, we will show that q(GÕ≠S

B

Õ) Æ |S
B

Õ |.
Then we will demonstrate that q(GÕ ≠ S) Æ q(GÕ ≠ S

B

Õ) +|S
A

|. Combining these
inequalities will provide the desired result:
(3.3) q(GÕ ≠ S) Æ q(GÕ ≠ S

B

Õ) +|S
A

| Æ |S
B

Õ | +|S
A

| = |S| .

Let us proceed with the first step. Because every a œ A has at least one neighbor
in B ™ BÕ by the marriage condition, and GÕ[BÕ] is complete, the graph GÕ is
connected. Also GÕ is even, so q(GÕ) = 0. Since G[BÕ ≠ S

B

Õ ] is also complete, S
B

Õ

only separates in GÕ the vertices in A all of whose neighbors lie in S
B

Õ . Let Aú be
the set of such vertices:

Aú :=
)

a œ A
-- N

G

Õ(a) ™ S
B

Õ
*

.

There are no edges between vertices of Aú, so the components of GÕ ≠ S
B

Õ are the
singleton vertices in Aú and the subgraph GÕ ≠ S

B

Õ ≠ Aú. Since N
G

Õ(Aú) ™ S
B

Õ by
definition, and

--N
G

Õ(Aú)
-- =

--N
G

(Aú)
-- Ø |Aú| by the marriage condition, it follows

that
(3.4) |Aú| Æ

--N
G

Õ(Aú)
-- Æ |S

B

Õ | .

Hence we have a bound on the number of singleton components in GÕ ≠ S
B

Õ . The
component GÕ ≠ S

B

Õ ≠ Aú may also be odd. If the inequality in (3.4) is strict, then
Tutte’s condition holds regardless:

q(GÕ ≠ S
B

Õ) Æ |Aú| + 1 Æ |S
B

Õ | ≠ 1 + 1 = |S
B

Õ | .

Otherwise, we have |Aú| = |S
B

Õ |. But then
--GÕ ≠ S

B

Õ ≠ Aú-- =
--GÕ-- ≠ 2|Aú| © 0 mod 2,

so the only odd components are vertices in Aú. Thus
q(G ≠ S

B

Õ) = |Aú| Æ |S
B

Õ |

by (3.4), so again Tutte’s condition holds.
It remains to show that q(GÕ ≠ S) Æ q(G ≠ S

B

Õ) +|S
A

|. If S
A

is empty then we
are done. If not, consider removing S

A

from GÕ ≠ S
B

Õ . Recall that the components
of GÕ ≠ S

B

Õ are GÕ ≠ S
B

Õ ≠ Aú and singleton vertices in Aú. Set
S

A1 := S
A

fl Aú

and
S

A2 := S
A

\ S
A1 .

Removing S
A1 from GÕ ≠ S

B

Õ decreases the number of odd (singleton) components:
q(GÕ ≠ S

B

Õ ≠ S
A1) = q(GÕ ≠ S

B

Õ) ≠|S
A1 | .

Having removed S
A1 , we know that the vertices of S

A2 still lie in the unaltered
component GÕ ≠ S

B

Õ ≠ Aú. However, S
A2 does not separate any vertices in this

component since every v œ GÕ ≠S
B

Õ ≠Aú has a neighbor in BÕ \S
B

Õ , and GÕ[BÕ \S
B

Õ ]
is complete. Therefore, removing S

A2 from GÕ ≠ S
B

Õ ≠ S
A1 does not introduce any

new components. It is possible, however, that
--GÕ ≠ S

B

Õ ≠ Aú ≠ S
A2

-- is odd, so
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removing S
A2 can increase the number of odd components by at most 1. Therefore,

we arrive at the desired result:
q(GÕ ≠ S) = q(GÕ ≠ S

B

Õ ≠ S
A

)
= q(GÕ ≠ S

B

Õ ≠ S
A1 ≠ S

A2)
Æ q(GÕ ≠ S

B

Õ ≠ S
A1) + 1

= q(GÕ ≠ S
B

Õ) ≠|S
A1 | + 1

Æ q(GÕ ≠ S
B

Õ) + 1
Æ q(GÕ ≠ S

B

Õ) +|S
A

| .

The last inequality holds because S
A

”= ÿ. By (3.3), this completes the proof. ⇤
Now, with Hall’s theorem in our toolkit, we are ready to demonstrate some

surprising applications. The theorems that follow are both prompted by exercises
in Diestel’s text [1], and both reduce to showing that the marriage condition holds
in a bipartite graph. In each case, the di�culty lies in constructing the appropriate
graph.

Theorem 3.5. Let S be a finite set. If P = { P1, . . . , P
n

} and Q = { Q1, . . . , Q
n

}
are two distinct partitions of S into k-sets, then P and Q admit a common choice

of representatives.

Proof. Set A = { 1, . . . , n } and B = A. Construct the bipartite graph G(A, B)
such that the A–B edge ij œ E(G) i� P

i

fl Q
j

”= ÿ. If we can find a matching M
of A, then this matching will determine a common choice of representatives. For
every ij œ M , we would choose any x œ P

i

fl Q
j

to represent P
i

œ P and Q
j

œ Q.
To show that such a matching exists, we need to verify that the marriage condi-

tion holds. Let S ™ A, and let x œ P
i

for i œ S. There exists j such that x œ Q
j

.
Then ij œ E(G), so j œ N(S). Hence,

€

iœS

P
i

™
€

jœN(S)

Q
j

.

Thus,
k|S| =

---
€

iœS

P
i

--- Æ
---

€

jœN(S)

Q
j

--- = k
--N(S)

-- .

Dividing by k gives the desired result. ⇤
Theorem 3.6. Let X be a finite set, with X1, . . . , X

n

™ X. Set d1, . . . , d
n

œ N.

We can choose D
i

™ X
i

such that |D
i

| = d
i

for every i and D
i

fl D
j

= ÿ for i ”= j
i�

(3.7)
---
€

iœI

X
i

--- Ø
ÿ

iœI

d
i

for every I ™ { 1, . . . , n }.

The necessity of (3.7) is trivial: if there exist disjoint D
i

™ X
i

with |D
i

| = d
i

,
then clearly ---

€

iœI

X
i

--- Ø
---
€

iœI

D
i

--- =
ÿ

iœI

d
i

for any I.
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The necessity of (3.7) is analogous to the necessity of the marriage condition in
Hall’s theorem. The marriage condition is vital because enough neighbors must ex-
ist in order for a matching to be possible. Likewise, the inequality here is necessary
because the sets X

i

must each contain enough elements to make it possible for the
disjoint subsets D

i

to exist. This analogy suggests that we may be able to apply
Hall’s theorem if we construct the proper bipartite graph. The structure of (3.7)
suggests that B should equal X, and that for every S ™ A, the set N(S) must
equal

t
I

X
i

for some index I. Having made these observations, we are ready to
complete the proof.

Proof of Theorem 3.6. As discussed above, the necessity of (3.7) is clear. To prove
the su�ciency, we construct the appropriate bipartite graph. First, let

A =
n€

i=1
A

i

,

where |A
i

| = d
i

for every i and the A
i

are pairwise disjoint. Set B = X. Now,
construct the bipartite graph G(A, B) such that

(3.8) E(G) = { ax | a œ A
i

and x œ X
i

, 1 Æ i Æ n }.

Thus, for all i, every a œ A
i

is joined to every element of X
i

. We claim that choosing
the desired subsets D

i

™ X
i

reduces to finding a matching of A in G. Suppose A
is matched by M ™ E(G), and set

D
i

= { x œ X
i

| ax œ M for a œ A }, 1 Æ i Æ n.

Since N(X
i

) = A
i

for every i,

D
i

= { x œ X
i

| ax œ M for a œ A
i

}, 1 Æ i Æ n.

Thus, every subset D
i

is determined by the A
i

–X
i

edges of M . Because A
i

™ A is
matched by M , there are d

i

such edges, and each must be incident with distinct
vertices in X

i

since M is independent. Therefore, |D
i

| = d
i

for all i. Furthermore,
suppose that x œ D

i

fl D
j

for some i ”= j. But then there exist a
i

œ A
i

and a
j

œ A
j

such that a
i

x and a
j

x lie in M . But A
i

and A
j

are disjoint, so a
i

x ”= a
j

x are
adjacent edges in M , which contradicts the fact that M is a matching. Hence,
D

i

fl D
j

= ÿ for i ”= j, as desired.
To show that a matching of A exists in G, we need to verify that the marriage

condition holds. Let S ™ A. For every a œ A exists i such that a œ A
i

, so
N(a) = X

i

by (3.8). Thus,

N(S) =
€

aœS

N(a) =
€

iœI

X
i

,

where I ™ { 1, . . . , n }. Also, note that S ™
t

iœI

A
i

. By (3.7), the desired result
quickly follows:

--N(S)
-- =

---
€

iœI

X
i

--- Ø
ÿ

iœI

d
i

=
---
€

iœI

A
i

--- Ø |S| .

⇤
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4. Menger’s theorem

We devote this section to Menger’s theorem, a classic result which relates the
task of separating vertex sets (Definition 1.14) to the task of finding disjoint paths
(Definition 1.7).

Definition 4.1. Given a graph G and A, B ™ V (G), let S be the set of A–B
separators in G. We define

k(G, A, B) := min
XœS

|X| .

In other words, k(G, A, B) is the minimum number of vertices required to sepa-
rate A from B in G. We are now ready to state Menger’s theorem.

Theorem 4.2 (Menger’s theorem). Let G = (V, E) and A, B ™ V . The maximum

number of disjoint A–B paths in G equals k(G, A, B).

It is simple to show that there can be no more than k(G, A, B) disjoint A–B
paths:

Lemma 4.3. Let G = (V, E) and A, B ™ V . Any set of disjoint A–B paths has no

more than k(G, A, B) elements.

Proof. Set k = k(G, A, B), and let X ™ V be an A–B separator of minimum size.
Suppose we find more than k disjoint A–B paths. Every such path has a vertex in
X. But |X| = k, so it follows by the pigeonhole principle that at least two of the
paths share a vertex in X. Hence a contradiction. ⇤

Thus, to prove Menger’s theorem it su�ces to demonstrate that k(G, A, B) dis-
joint A–B paths exist. In this paper we proceed to do so by induction on ÎGÎ,
following an outline provided by Diestel [1, p. 83, Exercise 16]. We proceed with a
lemma that completes the proof of Menger’s theorem in one of its major cases.

Definition 4.4. Given a graph G and X, Y ™ V (G), define G
X,Y

™ G to be
induced by the union of X and the components of G ≠ X that meet Y .

Lemma 4.5. Let G = (V, E) be a graph. Let X ™ V be a minimum A–B separator

in G. Suppose Menger’s theorem holds for graphs H with ÎHÎ < ÎGÎ. Then if..G
X,A

.. <ÎGÎ and

..G
X,B

.. <ÎGÎ, there exist |X| disjoint A–B paths in G.

Proof. Let U be an A–X separator in G
X,A

, and let P be an A–X path in G. The
interior of P lies in a component of G–X that meets A, so P is also an A–X path
in G

X,A

. Thus, P has a vertex in U , so U is an A–X separator in G. Therefore,
U is also an A–B separator in G, so |U | Ø |X|. Since

..G
X,A

.. < ÎGÎ, we can
apply Menger’s theorem to find a set A of |X| disjoint A–X paths in G

X,A

™ G.
Similarly, we can find a set B of |X| disjoint X–B paths in G. The paths in A
cannot intersect with paths in B outside of X, since otherwise X would not separate
A from B. Hence, each x œ X is the single vertex shared by a unique path in A
with a unique path in B. Therefore, we can join these pairs of paths in X to create
the desired |X| disjoint A–B paths in G. ⇤

We are now ready to prove Menger’s theorem.

Proof of Theorem 4.2. Set k = k(G, A, B). Recall that by Lemma 4.3, our task is
to show that k disjoint A–B paths exist in G. We proceed by induction on ÎGÎ. If
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G has no edges, then AflB is an A–B separator, so |A fl B| Ø k. Thus, the vertices
in A fl B provide k disjoint (trivial) A–B paths.

Now let xy œ E. Suppose that S is a minimum A–B separator in G≠xy. By the
inductive hypothesis, G ≠ xy contains |S| disjoint A–B paths. Call the set of these
paths P. Every A–B separator in G must have at least |S| vertices, since otherwise
|S| would not be a smallest separator in G≠xy. Thus, if SÕ with |SÕ| = |S| separates
A from B in G, it follows that |SÕ| = k and the |S| paths in P su�ce. If no such
separator exists, then in particular S fails to separate A from B in G. Thus, there
exists a path P ™ G that avoids S. Because S is an A–B separator in G ≠ xy, it
follows that xy œ P . Hence x, y /œ S. However, P cannot avoid S

x

:= S fi { x }
or S

y

:= S fi { y }. Thus, S
x

and S
y

are both smallest A–B separators in G, with
|S

x

| =
--S

y

-- = |S| + 1 = k.
If for one of X œ

)
S

x

, S
y

*
, it is true that

..G
X,A

.. < ÎGÎ and
..G

X,B

.. < ÎGÎ,
then an application of Lemma 4.5 provides |X| = k disjoint A–B paths in G.
Otherwise, for every X œ

)
S

x

, S
y

*
, we have

..G
X,A

.. =ÎGÎ or
..G

X,B

.. =ÎGÎ.
We claim that if

..G
X,A

.. = ÎGÎ, then X ™ B. Suppose not. Then there exists
v œ X such that v /œ B. We wish to reach a contradiction by showing that X is
not minimum. Thus, it su�ces to demonstrate that every A–B path that passes
through v also passes through another w œ X \ { v }. Then X \ { v } would be a
smaller A–B separator in G. Let Q = v1 . . . v

n

be an A–B path in G with v1 œ A
and v œ Q. Thus v = v

j

for some 1 Æ j < n. Since E = E(G
X,A

), we have that
N

G

(v) ™ G
X,A

. It follows that v
j+1 œ G

X,A

. If v
j+1 œ X, we are done. If not, then

v
j+1 lies in some component C œ C

G≠X

that meets A. Set a œ V (C) fl A. Let R
be an a–v

j+1 path in C. Then the A–B path aRv
j+1Qv

n

™ G must have a vertex
w œ X. Since V (R) fl X = ÿ, it follows that w = v

k

for some k > j + 1. Thus,
w œ V (Q) fl

!
X \ { v }

"
is the desired vertex.

Analogously, if
..G

X,B

.. =ÎGÎ, then X ™ A. Thus, S
x

and S
y

are each contained
in A or B. In particular, x œ A or x œ B, and y œ A or y œ B. Suppose x, y œ A\B
or x, y œ B \ A. But then no A–B path can contain xy, so S su�ces to separate A
from B in G, contradicting our assumption. Thus, x œ A and y œ B or vice versa,
so the edge xy forms an A–B path of length 1. Recall that no path in P contains
x or y. Therefore, P fi { xy } is a set of |S| + 1 = k disjoint A–B paths in G. ⇤

To demonstrate the power of Menger’s theorem, we proceed to derive König’s
theorem about matchings. Although König’s theorem is nontrivial to prove directly,
it is nothing but a special case of the much stronger Menger’s theorem. Hence, we
state it here as a corollary.

Definition 4.6. Let G = (V, E). Given V Õ ™ V and EÕ ™ E, we say that V Õ
covers

EÕ if every e œ EÕ is incident with some v œ V Õ. The set V Õ is then called a cover

of EÕ.

Corollary 4.7 (König’s theorem). Given a bipartite graph G(A, B), the maximum

size of a matching in G equals the minimum number of vertices that cover E(G).

Proof. Since G is bipartite, a matching in G is equivalent to a set of disjoint A–B
paths. Furthermore, a cover of E(G) is equivalent to an A–B separator. Therefore,
a direct application of Menger’s theorem su�ces. ⇤
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