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Abstract. In this paper, we start from the building blocks of probability the-

ory, including σ-field and measurable functions, and then proceed to a formal
introduction of probability theory. Later, we introduce stochastic processes,

martingales and Wiener processes in particular. Lastly, we present an appli-

cation - the Black-Scholes Formula, a model used to price options in financial
markets.
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1. The Building Blocks

Consider the set Ω of all possible outcomes of a random process. When the set
is small, for example, the outcomes of tossing a coin, we can analyze case by case.
However, when the set gets larger, we would need to study the collections of subsets
of Ω that may be taken as a suitable set of events. We define such a collection as
a σ-field.

Definition 1.1. A σ-field on a set Ω is a collection F of subsets of Ω which obeys
the following rules or axioms:

(a) Ω ∈ F
(b) if A ∈ F , then Ac ∈ F
(c) if {An}∞n=1 is a sequence in F , then

⋃∞
n=1An ∈ F

The pair (Ω,F) is called a measurable space.

Proposition 1.2. Let (Ω,F) be a measurable space. Then

(1) ∅ ∈ F
(2) if {An}kn=1 is a finite sequence of F-measurable sets, then

⋃K
n=1An ∈ F

(3) if {An}∞n=1 is a sequence of F-measurable sets, then
⋂∞
n=1An ∈ F
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Given Ω we let 2Ω denote the set of all subsets of Ω and call it the power set of
Ω.

The σ-field 2Ω is the largest σ-field on Ω.

Proposition 1.3. If {Fα}α∈τ is a collection of σ-fields on Ω, then
⋂
α∈τ F is a

σ-field on Ω.

Proposition 1.4. If A is a collection of subsets of Ω, then there exists a unique
smallest σ-field on ω, containing A, which is contained in every σ-field that contains
A. We denote this σ-field by F(A) and call it the σ-field generated by A.

Proposition 1.5. if A,A1 and A2 ⊆ 2Ω, then the following hold.

(a) If A1 ⊆ A2, then F(A1) ⊆ F(A2)
(b) If A is a σ-field, then F(A) = A
(c) F(F(A)) = F(A)
(d) If A1 ⊆ F(A2), then F(A1) ⊆ F(A2)

Proof. (a) A1 ⊂ A2 ⊂ F(A2). Since F(A2) is a σ-field and F(A1) is the
smallest σ-field containing A1, this implies F(A1) ⊂ F(A2).

(b) if A is a σ-field, it must be the smallest σ-field containing A. Hence A =
F(A).

(c) F(F(A)) = F(A) = A
(d) by (a) F(A1) ⊂ F(F(A2)), and by (c) F(F(A2)) = F(A2).

�

Definition 1.6. Let (Ω,F) be a measurable space.

(a) A discrete filtration on (Ω,F) is an increasing sequence of σ-fields (Fn)∞n=1

such that F1 ⊂ F2 ⊂ ... ⊂ Fi ⊂ ... ⊂ F .
(b) A continuous filtration on (Ω,F) is a set of σ-fields (Ft)t∈I , where I is an

interval in R, such that for all t, s ∈ I, t < s, we have Ft ⊂ Fs ⊂ F .

We call Fn (respectively Ft) the history up to time n (respectively time t).

Example 1.7. Consider tossing a fair coin 3 times. The 3 tables below demonstrate
the filtrations on outcome space after the first, second and the third toss. The
outcome space can be filtered into two subsets by the outcomes of the first flip,
and further filtered into four subsets by the outcomes of the first two flips, eight
singleton sets by the outcomes of all three flips.

Flip 1 Flip 2 Flip 3
H H H
H H T
H T H
H T T
T H H
T H T
T T H
T T T

Flip 1 Flip 2 Flip 3
H H H
H H T
H T H
H T T
T H H
T H T
T T H
T T T

Flip 1 Flip 2 Flip 3
H H H
H H T
H T H
H T T
T H H
T H T
T T H
T T T



AN APPLICATION OF PROBABILITY THEORY IN FINANCE: THE BLACK-SCHOLES FORMULA3

F1 ⊂ F2 ⊂ F3

Our next goal is to develop the tools to measure the likelihood of the events,
collected into a σ-field.

Definition 1.8. The Borel field on R,B(R), is the σ-field generated by the open
intervals in R. Subsets of R which belong to B(R) are Borel sets.

Proposition 1.9. The Borel field is generated by the closed intervals.

Proposition 1.10. Let X : Ω→ R denote a real-valued function. The collection of
sets X−1(B), where B ranges over the Borel subsets of R, is the σ-field generated
by X and is denoted FX .

Definition 1.11. A mapping X : Ω → R, where (Ω,F) is a measurable space, is
called F-measurable if X−1(B) ∈ F for every Borel subset B ⊂ R.

Proposition 1.12. A mapping X : Ω→ R is F-measurable if and only if FX ⊂ F .

Proposition 1.13. If the collection A of subsets of R generated the Borel field,
then X : Ω→ R is F measurable if and only if X−1(A) ∈ F for all A ∈ A.

Proposition 1.14. If c is a real number and X and Y are F measurable functions
defined on Ω, then X +Y,X −Y,X ·Y , and cX are F measurable. If Y (ω) 6= 0 for
all ω ∈ Ω, then X

Y is also measurable.

Example 1.15. The indicator function of a set A in Ω, 1A : Ω → R, is F-
measurable, where F = {A,Ac, ∅,Ω} is measurable:

1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A

Proposition 1.16. If f : R→ R is continuous then f is Borel measurable.

Proposition 1.17. If the sequence (Xn)∞n=1 of F-measurable functions on Ω con-
verges pointwise to X, then X is F-measurable.
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2. Probability

We formally define probability space, expected value, continuity and integrability
using σ-fields and measurable functions in this section.

Definition 2.1. A probability space is a triple (Ω,F , P ) where Ω is a set (the
sample space), F is a σ-field on Ω and P , the probability measure, is a mapping
from F into [0, 1] such that

P (Ω) = 1,

and if (An)∞n=1 is any sequence of pairwise disjoint events in F , then

P (
⋃∞
n=1An) =

∑∞
n=1 P (An).

Definition 2.2. If (Ω,F , P ) is a probability space, then A ∈ F and B ∈ F are
independent events if

P (A ∩B) = P (A) · P (B).

Definition 2.3. If (Ω,F , P ) is a probability space and X : Ω→ R is measurable,
we call X a random variable on (Ω,F , P ).

Definition 2.4. The random variables X and Y on the probability space (Ω,F , P )
are independent if the σ-field they generate, FX and FY , are independent.

Definition 2.5. A stochastic process X is a collection of random variables (Xt)t∈T
on a probability space (Ω,F , P ), indexed by a subset T of the real numbers.

Definition 2.6. If X = (Xt)t∈T is a stochastic process on (Ω,F , P ) and (Ft)t∈T is
a filtration on (Ω,F , P ), then X is adapted to the filtration if Xt is Ft measurable
for all t ∈ T .

In the next two sections, we will introduce two stochastic processes, martingales
and Wiener Processes.

Definition 2.7. X is a simple random variable if and only if X is a finite linear
combination of indicators. A simple random variable can only take finetly many
values.

Definition 2.8. Let X denote a simple random variable on the probability space
(Ω,F , P ). If X has range (xi)

n
i=1 and ωi ∈ X−1({xi}) for all i, then

E[X] =
∑n
i=1 xiPX({xi}) =

∑n
i=1X(ωi)PX({X(ωi)}).

Definition 2.9. A random variable X on a probability space (Ω,F , P ) is integrable
if its positive and negative parts, X+ and X− where
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X+(ω) =

{
X(ω) if X(ω) ≥ 0

0 if X(ω) < 0

X−(ω) =

{
−X(ω) if X(ω) < 0

0 if X(ω) ≥ 0

are both integrable. If X is integrable we let

E[X] := E[X+]− E[X−] =
∫

Ω
X+dP −

∫
Ω
X−dP =

∫
Ω
XdP .

Proposition 2.10. If (Ω,F , P ) is a probability space with Ω = {ωn : n ∈ N} and
F = 2Ω, then X : Ω→ R is integrable if and only if∑∞

n=1 |X(ωn)|P ({ωn}) <∞.

If X is integrable

E[X] =
∫

Ω
XdP =

∑∞
n=1X(ω)P ({ωn}).

In probability theory, one says that an event happens almost surely if it happens
with probability one. The concept is analogous to the concept of “almost every-
where” in measure theory. A property holds almost everywhere if the set for which
the property does not hold has measure zero.

Proposition 2.11. (Monotone Convergence Theorem) If (Xn)∞n=1 is an increasing
sequence of positive random variables on the probability space (Ω,F , P ), then there
exists an integrable random variable X such that Xn → X almost surely as n→∞
if and only if limn→∞

∫
Ω
XndP <∞. When the limit is finite we have∫

Ω
(limn→∞Xn)dP =

∫
Ω
XdP = limn→∞

∫
Ω
XndP

Proposition 2.12. (Dominated Convergence Theorem) Let (Xn)∞n=1 denote a se-
quence of random variables on the probability space (Ω,F , P ) and suppose (Xn)∞n=1

converges almost surely to the random variable X. If there exists an integrable ran-
dom variable Y such that for all n, |Xn| ≤ Y almost surely, then X and each Xn

are integrable and

limn→∞
∫

Ω
XndP =

∫
Ω
XdP .

Definition 2.13. a probability density function (PDF), or density of a continuous
random variable, is a function that describes the relative likelihood for this random
variable to take on a given value.

Proposition 2.14. If the random variable X on (Ω,F , P ) has density function fX
and g is a Borel measurable function such that g(X)fX is Riemann integrable, then
g(X) is an integrable random variable and

E[g(X)] =
∫ +∞
−∞ g(x)fX(x)dx.
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Proposition 2.15. (The Central Limit Theorem)
Let (Xn)∞n=1 be a sequence of independent identically distributed random variables

in L2(Ω,F , P ) and for all n, let Yn = 1
n

∑n
i=1Xi. If E[Xi] = µ and Var(Xi) = σ2

for all i, then

limn→∞ P [Yn−µ
σ/
√
n
≤ x] = limn→∞ P [

∑n
i=1Xi−nµ√

nσ
≤ x] = 1√

2π

∫ x
−∞ e−y

2/2dy

for all x ∈ R.

Proposition 2.16. (The Radon-Nikodým Theorem) If P and Q are finite measures
on the measurable space (Ω,F) and Q(A) = 0 whenever A ∈ F and P (A) = 0, then
there exists a positive measurable function Y on Ω such that

(2.17) Q(A) =

∫
A

Y dP

for all A ∈ F . Moreover, any F-measurable function Z on Ω satisfying Equa-
tion 2.17 for all A ∈ G is equal to Y almost everywhere.

Proposition 2.18. If X is an integrable random variable on (Ω,F , P ) and G is a
σ-field on Ω such that G ⊂ F , then there exists a G-measurable integrable random
variable on (Ω,F , P ), E[X|G], such that

(2.19)

∫
A

E[X|G]dP =

∫
A

XdP

for all A ⊂ G. Moreover, if Y is any G-measurable integrable random variable
satisfying

(2.20)

∫
A

Y dP =

∫
A

XdP

for all A ⊂ G, then Y = E[X|G] almost surely in (Ω,F , P ).

Proof. Without loss of generality, consider X ≥ 0. Define a measure Q on G by

Q(A) =
∫
A
XdP

for all A ∈ G. It is immediate that this is a measure, absolutely continuous relative
to the measure P restricted to G.

Then by the Radon-Nikodým Theorem, there exists a positive G-measurable func-
tion function Z such that ∫

A
XdP =

∫
A
ZdP

for all A ∈ G.
For general random variable X, write X = X+ − X−, we can find random

variables Z+ and Z− with respect to Z+ and Z−. Then such random variable
satisfying Equation 2.19 exists and E[X|G] = Z+ − Z−.

If Y is any G-measurable integrable random variable satisfying Equation 2.20, it
satisfies 2.17, so Y = Z = E[X|G] almost surely in (Ω,F , P ).

�

If A = Ω in (2.19), then
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E[E[X|G]] =
∫

Ω
E[X|G]dP =

∫
Ω
XdP = E[X].

Definition 2.21. If X is an integrable random variable on (Ω,F , P ) and G is a σ-
filed on Ω such that G ⊂ F , then we call the G-measurable random variable E[X|G]
satisfying ∫

A
E[X|G]dP =

∫
A
XdP

for all A ⊂ G, the conditional expectation of X given G.
When Y is a random variable, we let E[X|Y ] = E[X|FY ] and call E[X|Y ] the

conditional expectation of X given Y .

3. Martingales

A martingale is a stochastic process satisfying a condition that removes bias.
There are two basic types of martingales: discrete and continuous. We focus on the
discrete martingales here.

Definition 3.1. Let (Fn)∞n=1 be a filtration on the probability space (Ω,F , P ).
A discrete martingale on ((Ω,F , P ), (Fn)∞n=1) is a sequence (Xn)∞n=1 of integrable
random variables on (Ω,F , P ), such that Xn is Fn measurable and

E[Xn+1|Fn] = Xn

for all n ≥ 1.

Proposition 3.2. If (Xn)∞n=1 is a martingale on ((Ω,F , P ), (Fn)∞n=1), then

E[Xn] = E[Xm]

for all n and m.

Proof. E[Xn] =
∫

Ω
XndP =

∫
Ω
E[Xn+1|Fn]dP =

∫
Ω
Xn+1dP = E[Xn+1]. Hence

E[Xn] = E[Xn+1] = E[Xn+2] = ... = E[Xm] for all n and m. �

Example 3.3. Martingales are the mathematical fomulation of a sequence of fair
games. Let Xn denote the winings per unit stake on the nth game in a sequence of
fair games. Then E[Xn] = 0 (since the games are fair) and Yn :=

∑n
i=1Xn are the

winnings accumulated by the end of the nth game. Then (Yn)∞n=1 is a martingale.

Definition 3.4. If (Xn)∞n=1 is a martingale on (Ω,F , P ) adapted to the filtration(Fn)∞n=1,
then (Xn(ω))∞n=1 is a sample path for each ω ∈ Ω.

We investigate if this stabilizes with time, that is, whether or not limn→∞Xn(ω)
exists.

Definition 3.5. A collection of integrable random variables (Xα)α∈τ is L1-bounded
if

supα∈τ E[|Xα|] <∞.
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Proposition 3.6. If (Xn)∞n=1 is a martingale on (Ω,F , P ) and (Xα)α∈τ is L1-
bounded, then there exists an integrable random variable X on (Ω,F , P ) such that
limn→∞Xn = X almost surely.

Proof. Let A := {ω ∈ Ω : (Xn(ω))∞n=1 converges}. If ω /∈ A, then

limn→∞ inf Xn(ω) < limn→∞ supXn(ω)

and, since the rationals are dense in the reals, there exist rational numbers p and
q, p < q, such that

ω ∈ Ap,q := {ω ∈ Ω : limn→∞ inf Xn(ω) < p < q < limn→∞ supXn(ω)}.

Hence, if P (Ap,q) = 0 for all p, q ∈ Q, p < q, then

P (Ac) = P (
⋃
p,q∈Q,p<q Ap,q) ≤

∑
{p,q∈Q,p<q P (Ap,q) = 0

and the sequence (Xn(ω))∞n=1 converges almost surely. By the Monotone Conver-
gence Theorem limn→∞Xn = X almost surely. �

Definition 3.7. A set of integrable random variables (Xi)i∈I on the probability
space (Ω,F , P ) is uniformly integrable if

limm→∞

(
supi∈I

∫
{|Xi|≥m} |Xi|dP

)
= 0

Definition 3.8. Let (Ft)t∈I denote a filtration on (Ω,F , P ), indexed by an interval
I of the real numbers, and let (Xt)t∈I denote a set of integrable random variables
on (Ω,F , P ) adapted to the filtration; that is, Xt is Ft measurable for all t ∈ I.
Then (Xt)t∈I is a continuous martingale if E[Xt|Fs] = Xs for all s, t ∈ I, s ≤ t.

4. Wiener Processes

Definition 4.1. Let (Wt)t≥0 denote a collection of random variables on (Ω,F , P )
with the following properties:

(a) W0 = 0 almost surely;
(b) Wt is N(0, 1) distributed for all t ≥ 0 (Gaussian increments);
(c) for any n and any {0 = t0 < t1 < ... < tn+1}, (Wti −Wti−1

)ni=1 is a set of
independent random variables (independent increments);

(d) the probability distribution of Wt−Ws depends only on t− s for 0 ≥ s ≥ t
(stationary increments).

A stochastic process satisfying the above properties is called Wiener process or
Brownian motion.

Proposition 4.2. If (Wt)t≥0 is a Wiener process, then (Wt)t≥0 and (W 2
t − t)t≥0

are martingales.
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Proof. By definition, Wt −Ws is independent of Fs for all t and s, 0 ≤ s ≤ t, so is
(Wt −Ws)

2. For 0 ≤ s ≤ t

E[Wt|Fs] = E[Wt −Ws|Fs] + E[Ws|Fs]
= E[Wt −Ws|Fs] +Ws

= E[Wt −Ws] +Ws

= E[Wt]− E[Ws] +Ws

= Ws, since E[Wt] = E[Ws] = 0.

Hence (Wt)t≥0 is a martingale.
For 0 ≥ s ≥ t,W 2

t = (Wt −Ws)
2 + 2(Wt −Ws)Ws +W 2

s and

E[W 2
t |Fs] = E[(Wt −Ws)

2|Fs] + 2E[(Wt −Ws)Ws|Fs] + E[W 2
s |Fs]

= E[(Wt −Ws)
2|Fs] + 2WsE[(Wt −Ws)|Fs] +W 2

s

= E[(Wt −Ws)
2] + 2WsE[Wt −Ws] +W 2

s

= t− s+ 2Ws · 0 +W 2
s since Wt −Ws is N(0, t− s).

Hence E[W 2
t − t|Fs] = W 2

s + t−s− t = W 2
s −s. so (W 2

t − t)t≥0 is a martingale. �

Definition 4.3. If (Wt)t≥0 is a Wiener process, fixing ω ∈ Ω, we get a function of
time Xω(t) = X(t, ω), called a sample path of the process.

Proposition 4.4. If (Wt)t≥0 is a Wiener process, then there exists a probabil-

ity space (R[0,∞),F∞,W ) and a filtration (Ft)t≥0 on (R[0,∞),F∞,W ), such that
(Wt)t≥0 is a stochastic process adapted to the filtration. Moreover, paths of the
process are almost surely continuous and almost surely nowhere differentiable with
respect to the measure W .

The process (µt+σWt)t≥0 is called Brownian motion with drift, while the process
(C exp(µt+ σWt))t≥0 is called a geometric or exponential Brownian motion.

5. The Black-Scholes Formula

In this section, we present an example of the application of stochastic process.
We examine share price as the random variable, and derive the Black-Scholes fomula
for pricing a call option.

We introduce some finance background first, for example, interest rate, options,
and hedging.

We begin with the interest rate.
If an amount A is borrowed or saved for T years at rate r of simple interest, then

the repayment due at time T is

A+ArT = A(1 + rT ).
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Interest can, of course, be compounded at various intervals of time. And the
more frequent the compounding the greater the interest earned.

If the same amount is compounded at a total of nT intervals of times, the total
repayment at timeT will be A(1 + rT )nT .

If we compound over smaller and smaller intervals, we obtain in the limit con-
tinuously compounded interest.

Proposition 5.1. For any real number r

limn→∞(1 + r
n )n = er.

Proof. We know

d
dx log(x) = lim∆→0

log(x+∆x)−log(x)
∆x = 1

x .

Let x = 1 and ∆x = r/n, then ∆x→ 0 as n→∞, then

limn→∞
log(1+ r

n )−log(1)
r
n

= limn→∞
n
r log(1 + r

n ) = 1
r limn→∞ log(1 + r

n )n = 1.

Hence limn→∞ log(1 + r
n )n = r, and as exp and log are inverse functions and

both are continuous, this implies

limn→∞(1 + r
n )n = exp(limn→∞ log(1 + r

n )n) = exp(r) = er.

�

The following two corollaries illustrate a basic functional relationship between
time and money mathematically.

Corollary 5.2. An amount A earning continuously compounded interest at a con-
stant rate r per year is worth AerT after T years.

Corollary 5.3. The discounted value of an amount A at a future time T , assuming
a constant continuously compounded interest rate r, is given by Ae−rT .

Now we introduce the finance term option. An option is a contract which gives
the buyer (the owner or holder) the right, but not the obligation, to buy or sell an
underlying asset or instrument at a specified strike price on or before a specified
date.

Since it is not an obligation, the investor can choose to not exercise the option.
Hence the return is non-negative.

A call option is an option to buy a certain asset. An option to sell is called a
put option.

If the option can only be exercised at any time prior to the maturity date, it
is called a European Option; while if it can be exercised at any time prior to the
maturity date, it is called an American Option. We only consider European options
here.

We also introduce the term arbitrage and hedge in finance.
The simultaneous purchase and sale of an asset in order to profit from a difference

in the price is called arbitrage. It is a trade that profits by exploiting price differences
of identical or similar financial instruments, on different markets or in different
forms.

If the market prices do not allow for profitable arbitrage, the prices are said to
be arbitrage-free.
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Hedging is making an investment to reduce the risk of adverse price movements
in an asset. Normally, a hedge consists of taking an offsetting position in a related
security, such as a futures contract

A risk-neutral measure is a probability measure such that each share price is
exactly equal to the discounted expectation of the share price under this measure.

Now we present the binomial model for pricing options.

Proposition 5.4. Suppose the interest rate is r, the share price of a certain stock
is S at time 0 and that at a future time T it will either be Su or Sd where

0 < d < 1 < erT < u.

The risk neutral probability p that the share price will go up is

(5.5) p =
erT − d
u− d

The arbitrage-free price for a call option, CT , with strike price k, Sd < k < Su,
and maturity date T is

(5.6) CT =
Su− k
u− d

· (1− e−rT d).

The arbitrage-free price for a put option, PT , with strike price k, Sd < k < Su,
and maturity date T is

(5.7) PT =
Sd− k
u− d

· (1− e−rT d).

Proposition 5.8. No arbitrage opportunities for a call option exist if there exists
a probability measure under which the discounted share price is a martingale.

Proposition 5.9. All claims on a call option can be hedged if there is at most one
probability measure under which the discounted share price is a martingale.

Proposition 5.10. The seller’s portfolio for hedging the call option consists of ∆
shares and B bonds where

(5.11) ∆ =
Su− k
Su− Sd

and B = −de−rT (
Su− k
u− d

)
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Proposition 5.12. If a stock has drift µ and volatility σ, then there exist two
probability measures: W , the Wiener measure, and PN , the risk neutral probability
measure, on the measurable space (R[0,∞),F∞) such that the share price Xt has the
following properties:

(a) under W,Xt = X0 exp(µt+ σWt), and (Wt)t≥0 is a Wiener process;

(b) under PN , e
−rTXt = X0 exp(−σ

2

2 t+σW̃t) and (W̃t)t≥0 is a Wiener process.

Corollary 5.13. The discounted share price (e−rTXt)t≥0 is a martingale with
respect to the risk neutral probability measure Pn.

Now we try to find the risk neutral probability.
We assume the stock has drift µ and strictly positive volatility σ. We partition

the interval [0, t] into n adjacent subintervals, each of length ∆t = t/n. Then share
price changes on each subinterval by a fraction exp(µ∆t±σ∆x) where (∆x)2 = ∆t.
We use taylor expension for exp(x) to second order. By proposition 5.4, the risk
neutral probability p that the discounted share price rises by ∆x over a typical
subinterval [s, s + ∆t] so that a fair price is maintained or equivalently that the
martingale property is satisfied, is given by

p =
er(∆x)2 − eµ(∆x)2−σ∆x

eµ(∆x)2+σ∆x − eµ(∆x)2−σ∆x

=
e(r−µ)(∆x)2 − e−σ(∆x)

eσ(∆x) − e−σ(∆x)

≈ (r − µ)(∆x)2 + σ∆x− σ2(∆x)2/2

σ∆x+ σ2(∆x)2/2 + σ∆x− σ2(∆x)2/2

=
σ + (r − µ− σ2/2)∆x

2σ

=
1

2
(1 +

(r − µ− σ2

2 )

σ
∆x).

Proposition 5.14. (Black-Scholes Formula)
Suppose the share price of a stock with volatility σ is X0 today. For the buyer

(5.15) X0N(
log(X0

k ) + (r + 1
2σ

2)T

σ
√
T

)− ke−rTN(
log(X0

k ) + (r − 1
2σ

2)T

σ
√
T

)

is a fair price for a call option with maturity date T and strike price k given that
r is the risk-free interest rate.

Proof. By Proposition 5.12 and Corollary 5.13

V0 = EPN
[e−rT (XT − k)+|F0] = EPN

[e−rT (XT − k)+]

is the buyer’s fair price for the option, and it suffices to show that this reduces to
Equation 5.15. By Proposition 5.12,

e−rT (XT − k)+ = e−rT (X0 · e(r− 1
2σ

2)T+σ
√
TY − k)+

where Y is an N(0, 1) distributed random variable. By proposition 2.14,



AN APPLICATION OF PROBABILITY THEORY IN FINANCE: THE BLACK-SCHOLES FORMULA13

V0 = 1√
2π

∫
R
e−rT (X0e

(r− 1
2σ

2)T+σ
√
Tx − k)+e−

1
2x

2

dx.

Since

X0e
(r− 1

2σ
2)T+σ

√
Tx − k ≥ 0⇔ eσ

√
Tx ≥ (

k

X0
)e−(r− 1

2σ
2)T

⇔ x ≥ 1

σ
√
T

(log(
k

X0
)− (r − 1

2
σ2)T ) =: T1

using the substitution y = x− σ
√
T ,

V0 =
X0e

− 1
2σ

2T

√
2π

∫ ∞
T1

eσ
√
Tx− 1

2x
2

dx− ke−rT√
2π

∫ ∞
T1

e−
1
2x

2

dx

=
X0√
2π

∫ ∞
T1

e−
1
2 (x−σ

√
T )2dx− ke−rT (1−N(T1))

=
X0√
2π

∫ ∞
T1−σ

√
T

e−
1
2y

2

− ke−rT (1−N(T1))

= X0(1−N(T1 − σ
√
T ))− ke−rT (1−N(T1)).

Since

T1 − σ
√
T = 1

σ
√
T

(− log(X0

k )− (r + 1
2σ

2)T )

we have

1−N(T1 − σ
√
T ) = N(−T1 + σ

√
T ) = N(

log(
X0
k )+(r+ 1

2σ
2)T

σ
√
T

).

Similarly

1−N(T1) = N(
log(

X0
k )+(r− 1

2σ
2)T

σ
√
T

).

Substituting these two formulas into the integral respresentation for V0, we obtain
the Black-Scholes formula. �

Example 5.16. We use the Black-Scholes formula to price a call option with strike
price $26, maturity date 6 months, and interest rate 8% given that the stock has
volatility 10%, that is σ = 0.1, and the share price is $25 today. The price of the
option is

25N(
log( 25

26 )+(0.08+ 1
2 (0.1)2) 1

2

(0.1)
√

0.5
)− 26e−0.04N(

log( 25
26 )+(0.08− 1

2 (0.1)2) 1
2

(0.1)
√

0.5
)

= 25N(0.0495)− (24.98)N(−0.0212) = 0.51.

Proposition 5.17. (Call-Put Parity)
Suppose the share price of a stock with volatility σ is X0 today. If CT and PT

denote, respectively, fair prices for a call opoion and a put option with maturity
date T , strike price k and risk-free interest rate r, then

(5.18) CT − PT = S − ke−rT .
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Proof. Since CT = E[e−rT (XT−k)+] and PT = E[e−rT (XT−k)−], Proposition 5.12
implies

CT − PT = E[e−rT (XT − k)+]− E[e−rT (XT − k)−]

= E[e−rT (XT − k)]

= X0 − ke−rT .
�

Using the Call-Put Parity, we can find the fomula to price a put option.

PT = CT −X0 + ke−rT

where

CT = X0N(
log(

X0
k )+(r+ 1

2σ
2)T

σ
√
T

)− ke−rTN(
log(

X0
k )+(r− 1

2σ
2)T

σ
√
T

).
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