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Abstract. Social Choice Theory is a field in economics which studies the

possibility of fair aggregation maps of choices. One particularly famous result

is Arrow’s Impossibility Theorem, which states that given a selected set of
rational criteria for this aggregation map, no map exists which fulfills these

criteria. However, developments in topological machinery have provided an

alternative way of looking at social choice problems, such as the existence of
continuous maps from profile spaces into preference spaces. This paper will

attempt to present the problem of social choice in a topological setting, citing

results derived from the topological standpoint, and link this approach to the
discrete approach utilised in Arrow’s original proof.
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1. Introduction

Social Choice Theory is a field in economics which studies the methods of aggre-
gating the set of choices generated by members of a group. This extends itself into
resource allocation, decision making, as well as voting. In particular, the field has
been strongly defined by the presence of numerous impossibility theorems, which
present the non-existence of an ideal aggregation map.

While previous forays into this topic have dealt with mostly combinatorial ques-
tions, Chichilnisky and Heal presented a novel way of considering the problem of
social choice, which generalizes the problem to a continuous set of choices. This
paper will attempt to introduce how topology can be used to understand problems
about social choice, and demonstrate the usefulness of various topological machin-
ery in not only proving results, but providing intuition about the nature of the
problem of social choice. In addition, we build upon the approach of Baryshnikov
in utilizing topological machinery to generate a space out of finite choices, and
adapt his proof of Arrow’s Impossibility Theorem.

Date: September 1 2015.

1



2 WEI HAN CHIA

Theorem 1.1. (Arrow’s Impossibility Theorem) Given any group of n-voters n >
1, with well-defined choices over 3 or more distinct alternatives, there does not exist
an aggregation method which fulfills the following criteria:

(1) Pareto Efficiency (Weak): A pareto efficient aggregation is one in which
if every individual ranks one alternative over the other, then the resultant
aggregated map also ranks that alternative over the other.

(2) Non-dictatorship: An aggregation is said to be non-dictatorial when no
individual can impose their set of preferences on the entire group.

(3) Independence of Irrelevant Alternatives: An aggregation respecting
independence of irrelevant alternatives is one in which the only factors af-
fecting the rankings of two alternatives is their relative positions in each
individual’s preference. This means that adding in a choice to the system
without changing the pre-existing rankings should mean that the aggregation
ranks the two original choices in the same order.

Arrow’s Impossibility Theorem is the classical impossibility result, demonstrat-
ing that it is impossible to obtain a reasonable aggregation of preferences across
a set of individuals over more than 3 choices. This theorem was the basis of the
field of Social Choice, and the investigation of whether a method to aggregate a set
of preferences across multiple individuals could exist, and what conditions such a
map would have to fulfill. The development of topological machinery in considering
this question has brought an interesting perspective to the problem. This paper
will present the topological approach through a proof of both Arrow’s Impossi-
bility Theorem, as well as a more general theorem by Chichilnisky on continuous
choice spaces, and explore the intuition gained from considering this question from
a topological perspective.

While this paper will attempt to be as self-contained a discussion as possible, it
assumes some prior knowledge of basic topological concepts, and hence much of the
topological results utilized in the proofs will not be elaborated upon unless they
afford important intuition.

2. Generalizing the Space of Preferences

To begin the discussion of social choice, we must first define the parameters
upon which this decision is to be made. Namely, we must first characterize each
individual’s set of preferences in a topological space which can be worked in.

For the purposes of this paper, we will work with the common economic as-
sumption that the space of choices X, is isomorphic to Rn. To each individual, we
further assign a utility function:

u : Rn → R

Given this function, we can therefore characterize a preference ordering.

Definition 2.1. Given x, y ∈ Rn.
We say that x is preferred to y, or y ≺ x ⇐⇒ u(y) < u(x)

Since any preference can be identified by a utility function, the space of pref-
erences is therefore just the space of all utility functions. We will work with the
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simplification that all individuals have linear utility functions. 1 We will proceed
to construct the space of preferences using this assumption.

Definition 2.2. u1 ∼ u2 ⇐⇒ ∀x ∈ Rn, u1(x) = λu2(x) for some λ > 0.

Definition 2.3. We define a space of preferences, P for a given choice space X, to
be the set of equivalent linear utility functions u(x) defined on all x ∈ X.

Proposition 2.4. The space of preferences for a given choice space X = Rn is
homeomorphic to Sn−1.

Proof. Given any utility function, we can identify this linear utility function with
its gradient, which will be a vector in Rn, or a straight line through the origin.

Now from 2.2, we see that every set of positively linearly related vectors are
associated to a family of equivalent utility functions, which can be expressed simply
by any single vector. Given that we are interested purely in the ordinal nature of
preferences, we can represent every family of equivalent utility functions with its
normalized vector. The resultant space of vectors is clearly equivalent to Sn−1.
The association of each equivalent set of preferences to its vector is therefore the
required homeomorphism (ψ) from the space of preferences to Sn−1. �

This characterization is particularly powerful in the topological approach, given
the depth of study which has gone into understanding the homology of spheres and
relevant maps to and from spheres.

However, the above process only works for a continuous space of preferences. A
complete study of the space of preferences will therefore require the characterization
of preferences over a finite set of choices, reminiscent of the original phrasing of
Arrow’s Impossibility Theorem. To do so, we introduce the idea of a nerve.

Definition 2.5. Given an open cover U of X where Ui ∈ U ∀i ∈ I (where I
represents some index set), the nerve of U , NU is the simplicial complex with vertex
set {vi|i ∈ I}, and where an n-simplex [v1, ..., vn] belongs to NU if

⋂n
i=1 Ui 6= ∅.

Given any suitable open cover, we can proceed to generate an abstract simpli-
cial complex. This simplicial complex can therefore be utilized to investigate the
relevant homologies of the space.

Example 2.6. Given a set of discrete choices X = {1, 2, 3} and an ordering >
on X, the space of all possible preferences P = {σ(1) > σ(2) > σ(3)} where σ
represents all possible permutations on X.

Now let µ ∈ {+,−}. For i > j we define sets U+
ij = {p ∈ P | i >p j} and

U−ij = {p ∈ P | i <p j}
The sets Uµij form an open cover of the discrete space of preferences, and we can

proceed to generate the nerve of P , NP from this open cover.
The vertices of NP can therefore be identified as {ij | i 6= j}, corresponding to

each set Uµij , and 2-simplexes corresponding to the actual set of feasible preferences.

Definition 2.7. More generally, given any discrete space of choices X, we have
a discrete space of preferences P represented by the set of all possible orderings
of these choices. We can likewise construct the sets U+

ij = {p ∈ P | i >p j} and

1It is possible to generate the same space of preferences with all possible utility functions, by
looking at indifference surfaces [Chichilnisky 4]
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Figure 1. Constructing a simplicial complex by open covers

U−ij = {p ∈ P | i <p j} in a similar fashion by considering the pairwise ordering of
two distinct alternatives.

As in the example, we can then identify the vertices of NP as {ij | i 6= j}, and we
implement a simplicial structure by adding an n-simplex when the sets correspond-
ing to the n distinct vertices U+

ij (for distinct ij) have a non-empty intersection.
The structure formed after constructing all possible simplexes is the desired

representation of our space of preferences. If we have a space with n distinct
choices, then any n-simplex in our final structure can be represented by a coherent
preference (i.e. a valid set of orderings of n different choices).

Proposition 2.8. In the case of 3 alternatives, the simplicial complex NP generated
from choice set X where |X| = 3 is homotopy equivalent to S1.

Proof. We notice that this simplicial complex contains a boundary of a 2-simplex
that does not bound an 2-simplex. This is constructed by the vertices {12, 23, 31}
Each of these vertices is connected to each other by construction, but do not bound a
2-simplex as their intersection is empty (they do not form a coherent preference). In
addition, we notice that combinatorially, the only other impossible set of preferences
is given by {32, 21, 13}. However, it follows from the picture below that the resultant
structure is equivalent to S1, since the two impossible cycles share a boundary. �

Figure 2. The Simplicial Complex Constructed over a Preference
Space with 3 Choices
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This proposition illustrates a more general statement, that any simplicial com-
plex NP generated from choice set X where |X| = n is homotopy equivalent to
Sn−2. This statement is proven by Baryshnikov (Baryshnikov, 1993).

Two things are worth noting here. First, finding an impossibility result for the
space for the case of 3 choices is sufficient to prove an impossibility result for any
space with more than 3 choices. And second, that the generator of H1 (the first
homology group of S1) corresponds to a set of choices which are cyclic and therefore
cannot form a coherent preference, a phenomenon that underlies the Concordet
paradox 2

3. Profiles and Aggregation Maps

Having shown that the space of preferences is in both the continuous and discrete
case, homeomorphic to some n-sphere, we proceed to study the structure of the
relevant profiles.

Definition 3.1. A profile r of preferences P is a k-tuple determined by the number
of ”voters” k. I.e. given k voters, a profile r = (p1, ..., pk) where pi ∈ P ∀1 ≤ i ≤ k.
Therefore, r ∈ P k.

Proposition 3.2. In the case of a choice made over a continuous space X,
P k ' Sn−1 × ...× Sn−1 = (Sn−1)k

Proof. We simply use the same homeomorphism (ψ) defined in the proof of 2.4 on
every k entry of r ∈ P k. This clearly forms a homotopy equivalence (ψ1, ...ψk)
between each entry of P k and (Sn−1)k, since ψ is a homotopy equivalence between
P and Sn−1. �

Once again, we would like to be able to analyze the discrete conditions through
a similar framework. While every profile can be likewise represented as the k-th
cartesian product of a preference space with itself, this set does not provide any
useful topological intuition. To develop this intuition, it is necessary to once again
apply the concept of a nerve, generated as follows:

Definition 3.3. We define a vector µ to be a vector {µ1, ..., µn} where µi ∈ {+,−}
Now given a finite set of choices, we define Uµij =

{
r = (p1, ..., pk) | pi ∈ Uµiij

}
Now the set of all Uµij forms a cover for P k. Constructing the nerve of this

covering NPk results in a complicated simplicial structure, simply by virtue of the
large number of different possible profiles available even in the finite setting. Since
we are interested in maps which go from our space of profiles into the space of
preferences, we are interested in induced maps on the homologies of NPk and NP .
Therefore, we can only look at the homology of NPk up to dimensions of n− 2 (as
NP is homeomorphic to Sn−2).

Proposition 3.4. Given a set of 3 choices, H1(NP 2) = Z2

Proof. We first prove that the generator ofH1(NP 2) is defined by the cycles [12∗, 23∗, 31∗]
and [∗12, ∗23, ∗31]. These cycles are in H1(NP 2) because they represent a set of
incoherent preferences and therefore do not bound a 2-simplex.

2The Concordet paradox is a two-person voting paradox for 3 persons and 3 choices, in which
a majority aggregation rule is unable to be achieved when cyclic preferences exist.
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Next, we prove that any set of incoherent preferences can be generated by these
cycles. We do this by considering the fact that boundaries between these structures
are shared. Consider the cycle [1221, 2323, 3131]. This cycle has a shared boundary
with [1221, 2323, 3113] as in the picture below. A similar method will demonstrate
that this is true for any possible permutation of the orders in the second position.
This allows us to conclude that [12∗, 23∗, 31∗] is a generator. Using the same
proof in the case of [∗12, ∗23, ∗31] allows us to conclude that these two cycles are a
generator of all possible cycles representing incoherent preferences.

Figure 3. The Shared Boundaries of [1221,2323,3131] and [1221,2323,3113]

Now to conclude that H1(NP 2) = Z2, it remains to prove that these two gen-
erators are independent. This follows by considering the projection map of each
preference from NP 2 → NP . �

This illustration once again underlies the more general statement, that given a
set of n choices and k individuals, the homology groups of NPk are 0 up to n−2 and
Hn−2(NPk) = Zk. The details of this proof can once again be found in Baryshnikov
(Baryshnikov, 1993).

Having illustrated the topological structure of both the space of profiles and
preferences, we now concern ourselves with a mathematical representation of what
an aggregation map represents, and list certain common assumptions about these
aggregation maps.

Definition 3.5. An aggregation map is a function f : P k → P . Which is often
assumed to fulfill certain rational assumptions about human behavior.

We will list below the mathematical interpretations of the original assumptions
used by Arrow in the description of his impossibility theorem.

(1) Pareto Efficiency (Weak): An aggregation map is said to be pareto
efficient if for any profile r = {p1, ..., pk} such that in every preference pi,
x ≺ y, f(r) 7→ p such that in the aggregated preference p, x ≺ y.
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(2) Non-dictatorship: An aggregation map is said to be non-dictatorial if
@ pk such that ∀ p, f(p, ..., pk, ..., p) 7→ pk.

(3) Independence of Irrelevant Alternatives: If pi is a preference obtained
by inserting a new option randomly into some preference pi such that x ≺ y
in both pi and pi, x ≺ y in f(p1, ..., pn) =⇒ x ≺ y in f(p1, ..., pn).

It is important here to add an additional condition which is relevant when con-
sidering the case of a continuous choice space. We naturally want the aggregation
map to be a continuous one, not only because of the mathematical usefulness of this
assumption, but also because it reflects a certain stability in the aggregation map,
which would be natural to expect in any ideal collective decision making process.

4. A Topological Impossibility Result

We are now equipped to present proofs of the impossibility results in Social
Choice theory. However, rather than begin with a proof of Arrow’s impossibility
theorem, we begin with a proof of impossibility of an aggregation map in a contin-
uous setting, presented by Chichilnisky. This theorem is not only useful because of
its generality in the continuous setting, but also because of the intuition it affords
to the topological approach to proving social choice theorems.

Theorem 4.1. (Chichilnisky) Given a set of continuous choices and an aggregation
map:

f : P k → P

satisfying the following conditions

(1) Stability, i.e. f is continuous
(2) Pareto Efficient, i.e. x ≺ y in pi ∀i =⇒ x ≺ y in f(p1, ..., pk)
(3) Weak Positive Association, if f(p1, ..., pi, ..., pk) = −λpi for some i =

1, ..., k, λ > 0, and some (p1, ..., pk) ∈ P k, then f(−pi, ..., pi, ...,−pi) 6= λpi
for any λ > 0.

Then this map is homotopic to a dictatorial map:

fd : P k → P

fd(p1, ..., pd, ..., pk) 7→ pd

The intuition behind the first two conditions is readily understandable. The
assumption of weak positive association is reasonable because one would expect
that if the societal aggregation rule chose a result opposite of a single individual’s
preference given some preferences by other individuals, it would not make sense
for this same aggregation to choose that individual’s preference when all other
individuals had the opposite preference.

We earlier defined a homeomorphism ψ from P → Sn. We now need to identify a
continuous map τ from Sn → P . This will be easily identified through the following
commutative diagram.

P

ψ

��
Sn

id //

τ

==

Sn

τ here is simply the inverse of ψ.
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Let f be a aggregation map which fulfills the conditions in 4.1. Now we can
define the map φ through following commutative diagram:

P k
f // P

τ

��
(Sn)k

ψi,...,ψk

OO

φ // Sn

It is clear that φ should be a continuous map from (Sn)k → Sn, such that

φ(x1, ..., xn) 7→ τ(f(ψ1(x1), ..., ψ2(x2)))

Fixing x0 ∈ Sn, we define

Gi = {(x1, ..., xk) | zj = z0∀ j 6= i}

Since each Gi is homeomorphic to a sphere Sn, we can utilize the following topo-
logical notion of degree.

Definition 4.2. For a map from Sn → Sn , the induced map

f∗ : Hn(Sn)→ Hn(Sn)

is a homomorphism from an infinite cyclic group ((Z)) to itself, and so f∗(α) = dα
for some integer d depending on f . We call this integer d the degree of the map f .

The degree of f fulfills the following properties:

(1) deg(id) = 1
(2) deg(f) = 0 if f is not surjective.
(3) degree of a map is homotopy invariant

We now establish certain facts resulting from the degree.

Proposition 4.3. The degree of any restricted map φ �Gi is either 0 or 1

Proof. We first notice a fact resulting from the pareto condition. Given some set of
choices (x1, x0, ...x0) x0, x1 ∈ Sn, the resultant aggregated map x must lie within
the shortest circular segment on Sn between x0 and x1 (C(x1, x0)). If the resultant
aggregated map was not within this segment, there would exist some y and z so that
x.y > x.z, but x0.y < x0.z and x1.y < x1.z, which contradicts pareto efficiency.

Now we consider φ �Gi (x0, ...,−x0, ..., x0). If this does not map to −x0, then
the fact above gives us that φ �Gi can never map to −x0. So φ �Gi is not surjective,
and its degree is 0.

Now if this maps to −x0, then by continuity, for any point z near −x0, it should
map to a point on the circular segment between z and x0. We also know that
the profile (x0, ..., x0) must map to x0, by our axiom of pareto efficiency. This,
together with the property of continuity applied to points on each circular segment,
establishes that the degree of this map should be 1 (Chichilnisky, 1982). �

Now we can define

D = {(x, ..., x) | x ∈ X}
to be the diagonal. D is likewise homeomorphic to Sn, and since f is pareto

efficient, it should respect unamity (i.e. f(p, ..., p) = p). It therefore follows that
the restriction of φ to D, φ �D has degree 1 since it is the identity.
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We can now define the inclusion map.

inGi : Sn → (Sn)k

where
inGi(x) 7→ (x1, ..., x, ..., xn) where xj = x0 ∀j 6= i

The diagonal inclusion is defined similarly,

inD(x) 7→ (x, ..., x)

This allows us to represent the maps φ �D= φ ◦ inD and φ �Gi= φ ◦ inGi .

Proposition 4.4. inD is homotopic to
∑k
i=1 inGi .

Proof. We first notice that
∑k
i=1 inGi is not always a point in (Sn)k. However,

we recall that when defining the space of preferences, we identified an equivalence
between linear utility functions based on their gradient. It follows that we can

present the point identified by
∑k
i=1 inGi as a point in (Sn)k by utilizing this

equivalence.

Now given any z ∈ Sn, notice that
∑k
i=1 inGi(z) ∼ ( (k−1)x0+z

|(k−1)x0+z| , ...,
(k−1)x0+z
|(k−1)x0+z| ).

Now (k − 1)x0 is a constant, this can be continuously deformed to (z, ...z), and so
the two maps are homotopic. �

Now since degree is homotopy invariant, we have deg(φ ◦ inD) =
∑k
i=1 deg(φ ◦

inGi) = 1. Now from 4.3, we must have that deg(φ ◦ inGd) = 1 for some d, and
deg(φ ◦ inGi) = 0 for all i 6= d.

Without loss of generality, say d = 1. Also note that since we chose x0 arbitrarily
when defining inGi , then by continuity of φ, for any x ∈ Sn:

(4.5) φ(x,−x, ...,−x) = x

Now consider any (x1, ..., xk) ∈ (Sn)k. By the weak positive association condi-
tion, if

φ(x1, ..., xk) = −x1,
it follows that

φ(x1,−x1, ...,−x1) 6= x1

However, this contradicts equation 4.5, so we have that φ(x1, ..., xk) 6= −x1.
The effects on the level of induced maps between Sn allow us to conclude that

given preferences (p1, ..., pk) we likewise have f(p1, ..., pk) 6= −p1. Now it follows
that given any d, tpd + (1− t)f(p1, ..., pk) 6= 0.

Proof. (Chichilnisky) We can therefore define the following map H on P k × [0, 1]
to be

(4.6) H(p1, ..., pk, t) =
tpd + (1− t)f(p1, ..., pk)

||tpd + (1− t)f(p1, ..., pk)||
Now it is easy to see that any H(p1, ..., pk, t) ∈ P for any t, and by construction,

H(p1, ..., pk, 0) = f(p1, ..., pk)

and
H(p1, ..., pk, 1) = pd.

we have the desired homotopy between the aggregation map f and a dictator map.
�
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This proof highlights the value of the topological approach. With a set of rather
simple conditions, we can demonstrate that any map is homotopic to a dictator map.
This enables us to study the actual mathematical effects of the assumptions we make
in generating impossibility results, and provides an easier way to understand them.
However, to obtain a better intuition behind social choice theory, we turn towards
the proof of the more practical Arrow’s Impossibility Theorem.

5. A Proof of Arrow’s Impossibility Theorem

We refer to the definitions provided in Section 3 to provide a statement of Arrow’s
Impossibility Theorem.

Theorem 5.1. Given any group of n-voters n > 1, with well-defined choices over
3 or more distinct alternatives, there does not exist an aggregation map f which
fulfills the following criteria:

(1) Pareto Efficiency (Weak)
(2) Non-dictatorship
(3) Independence of Irrelevant Alternatives

Using the concept of the nerve, it has been established that the nerve of possible
preferences, NP is homeomorphic to Sn−2 and the nerve of possible profiles NPK
has Hn−2(NPk) = Zk (Baryshnikov, 2000). Given this, we identify the Hn−2 as
the homology group of interest, given that Hn−2(NP ) = Z.

To investigate this relationship, we want to have some way of identifying maps
from NPk to NP with the actual aggregation map. Axiom (3) gives us this rela-
tionship.

Proposition 5.2. Any aggregation map which satisfies the independence of irrele-
vant alternatives axiom is a simplicial map from NPk to NP

Proof. Axiom (3) tells us that any ranking of two alternatives only depends on their
relative rankings in each preference, and not on any other alternatives. This means
that every vertex in NPk , which is identified with some subset of the open cover of

Pk, Uµij , can be unambiguously mapped to some vertex in NP , because each vertex
is defined purely based on a relation between two elements, and these relations are
independent of each other.

Now to define a proper simplicial map, we require that if the set of vertices in NPk
span a simplex, then their image in NP also span a simplex. However, this follows
because the vertices inNPk would only span a simplex if there is exists a valid profile,
but such a profile would consist of valid preferences from each individual, and hence
it must be represented by a set of vertices in NP which spans a simplex. �

We therefore see the value of the independence of irrelevant alternatives axiom
in helping to flesh out our topological modeling of the social choice problem. In
particular, it enables us to move from the finite case to a general topological space,
and in conjunction, the more abstract n-2th homology group. It is now clear how
we can proceed to prove Arrow’s impossibility theorem using axioms (1) and (2).
To do so, we re-use the topological framework provided by Chichilnisky.

Given 5.2, we investigate the following relationship between the n-2th homology
groups of NP and NPk . In particular, we realize that the aggregation map f induces
a map from the n-2th homology groups of NP and NPk . To finish the proof, we
require an additional lemma.
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Lemma 5.3. Given any map from NP → NP , the degree of the map is either 0 or
1.

Proof. Here, we prove this statement for the case of 3 choices. A detailed proof for
the situation with more than 3 choices can be found in Baryshnikov (Baryshnikov,
1993).

We first notice that if the map is not surjective, then its degree is 0. We therefore
deal with the situation when the map is surjective.

Figure 4. An Inversion Leading to a Non-Surjective Map

By our construction of the nerve, each point can only map to itself or its opposite
order, i.e [12] can only be mapped to [12] or [21]. Now if [12] maps to [12], and we
have an inversion in any of the other two coordinates, we get a non-surjective map,
since a valid preference gets map to an invalid preference. So if we fix the mapping
of [12], the only surjective map is the identity map.

Now if [12] maps to [21], by similar reasoning, all of the other vertices should
be inverted. However, this map is homotopic to the identity map as well. So its
degree should also be 1, and we are done. �

Here, we are interested in maps which are the composition of an inclusion map
and our desired aggregation map. Now say an individual’s inclusion map f ◦ inGi
has degree 1. This map is therefore either dictatorial, or the inverse. Now if this
map is the inverse, given an individual’s preference, it should always map to the
opposite preference. However, this means that the aggregation map takes [1212...]
to [21], which clearly contradicts the axiom of pareto efficiency. Therefore the only
possible degree 1 map created from a composition of an inclusion map and our
desired aggregation map is the identity map.

Proof. (Arrow’s Impossibility Theorem) The axiom of pareto efficiency gives us
that the map induced by f ◦ inD on Hn−2 is the identity map. We also realize that
the map induced by f ◦ inD is homotopic to the map induced by

∑n
i=1 f ◦ inGi ,

where inGi is defined similarly (as was the case in section 4). Now we have that
the sum of degrees of these maps are 1, and by 5.3, since each of these maps must
have either degree 0 or 1, only one of these induced maps must have degree 1.

Since degree is homotopy invariant, and the simplicial maps we are investigating
are homotopic to the actual maps on the underlying space, we know that a map
f ◦ inGα that has degree 1 is the identity map, and therefore is dictatorial. We can
therefore conclude that there must exist a dictator in the above scenario. �
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The usage of topological machinery therefore provides a simple proof of Arrow’s
Impossibility Theorem. Certain striking features should be identified about this
approach.

First, the nature of the n-th homology groups of the simplicial complex generated
by the NP and their relation to the impossibility of preferences. We see that the
space generated by the simplicial complex has a n-2 dimensional hole corresponding
to a cyclic set of preferences. The fact that this space is not contractible underlies
the impossibility statement, and provides a powerful visual representation of the
contradiction one would face in finding a suitable aggregation, even in a finite case.

Second, the ability to move between statements on a homological level and maps
from the actual space helps to simplify the question notably. In most cases, we
actually only consider whether a map is surjective, or whether it is the identity
map. This simplicity stands in stark contrast to the complex reasoning necessary
in the original combinatorial proof of Arrow’s Impossibility Theorem, and further
demonstrates the usefulness of the topological approach.

6. Concluding Remarks

Topology has indeed been used widely in the field of economics, and extends itself
to more than just Social Choice. Differential topology and Morse theory features
strongly in arguments about critical points in economies, a sophistication of the
original approach to general equilibrium using Brouwer’s fixed point theorem.

There is definitely further room to go in our analysis of Social Choice. In particu-
lar, much literature has devoted effort into redefining assumptions which permit the
creation of a suitable aggregation map. The topological approach provides a much
simpler path to test the validity of these approaches. The topological approach
also affords another angle to the problem. Rather than assumptions on the map,
an investigation into the type of choice space which admits a suitable aggregation
map can also be performed.

Mathematically, this approach can also be developed further. The development
of cellular homology, and the recognition that all simplicial complexes are cell com-
plexes provides a natural point for further sophistication of the topological model.
This is particularly interesting since almost all spaces can be approximated by a
cell complex. Naturally, combinatorial topological methods can also be used to
investigate the problem in a finite setting.

In conclusion, while we can gain valuable intuition about the problem of Social
Choice through the topological approach, the problem of social choice also provides
a unique example of the appeal of using a topological framework to investigate
problems.
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