
THE EULER CHARACTERISTIC OF FINITE TOPOLOGICAL
SPACES

ADAM BLACK

Abstract. The purpose of this paper is to illustrate the relationship between
the topological property of the Euler characteristic and a combinatorial object,
the Möbius function, in the context of finite T0-spaces. To do this I first explain
the fundamental connection between such spaces and finite partially ordered
sets by proving some facts fundamental to the study of finite spaces. Then I
define the Euler characteristic and provide some elementary facts pertaining
to the Euler characteristic of finite T0-spaces. Finally, I introduce the Möbius
function and prove its relationship to the Euler characteristic.
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1. Preliminary Results

1.1. The Relationship Between T0 Finite Topological Spaces and Finite
Posets.

To begin we will establish some basic results concerning the relationship between
finite topological spaces and finite preordered sets. Let X be some finite topolog-
ical space and for some x ∈ X let Ux be the intersection of all of the open sets
containing x, which may be referred to as the minimal open set of that point. This
allows us to define a preorder on X where x ≤ y if x ∈ Uy. A space is said to satisfy
the T0 separation axiom if the topology distinguishes points, that is for any two
distinct points in X there exists an open set containing one of the points but not
the other. Note then that for x, y ∈ X for some T0 space X, if x ≤ y and y ≤ x,
x and y share all of their neighborhoods, and thus must be the same point. This
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means that x ≤ y and y ≤ x implies that x = y so if a space is T0, the ordered
set determined by its topology is a partially ordered set, henceforth referred to as
a poset. Thus, every T0 finite topological space determines a poset.

Similarly, beginning with a finite preordered set X we may define a topology on
X via the basis of sets of the form {y ∈ X | x ≤ y}. If y ≤ x, then y ∈ Ux and
conversely if y ∈ Ux then y ∈ {z ∈ X | z ≤ x} and thus y ≤ x, implying that the
constructions relating finite preorders and finite topological spaces are mutually
inverse. As before, if X is a poset then the topology generated from that poset
structure is T0 because if x ≤ y and y ≤ x then x and y must share all of their
neighborhoods so if x ≤ y and y ≤ x implies that x = y, then x and y are equal
when they share all of the same neighborhoods.

In summary, we record the following result:

Proposition 1.1. There exists a bijection between finite topological spaces and
preorders. Moreover, there exists a bijection between T0 finite topological spaces
and posets.

Note that this claim could be extended to infinite sets by way of Alexandroff
spaces, spaces in which arbitrary intersections of open sets are open, but this paper
will be confined to the finite case.

An important aspect of this relation is the following:

Lemma 1.2. A function f : X → Y between finite spaces is continuous if and only
if it is order-preserving.

Proof. Let f be continuous and let w ≤ x. By the definition of continuity, f−1(Uf(x))
must be open in X, and because Ux is the smallest open set containing x, Ux ⊂
f−1(Uf(x)) where w ∈ Ux. This implies that f(w) ∈ Uf(x) so f(w) ≤ f(x).
Let f be order preserving and let V be open in Y . For some f(x) ∈ V , Uf(x) ⊂ V
so if w ∈ Ux then w ≤ x implying that f(x) ≤ f(w) so f(w) ∈ Uf(x), meaning
w ∈ f−1(V ). We may then write f−1(V ) as the union of all Ux for f(x) ∈ V so it
is open. �

1.2. Finite T0 Spaces and Simplicial Complexes.

Within a poset, a chain is a subset of elements where any two elements are com-
parable. Using this notion of chains, we may construct a simplicial complex in the
following way:

Definition 1.3. Let X be a finite T0-space. The simplicial complex associated with
X is the simplicial complex whose simplices are the non-empty chains of X, where
these chains are formed by considering X as a poset. This shall be denoted K(X).

It will often be useful to think of simplicial complexes as geometric objects so
we give the following definition:

Definition 1.4. The geometric realization of a simplicial complex is the set of
convex combinations of the form t1x1 + . . . + trxr where x1 < . . . < xr is a chain
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in X,
r∑

i=1
ti = 1, and ti > 0 for all i. In this way, we may realize the simplices of a

simplicial complex as subsets of RN , each chain giving a simplex. We give this the
metric topology with metric:

d(
n∑

i=0
tixi,

n∑
i=0

sixyi) =

√√√√ n∑
i=0

(ti − si)2

This construction shall be denoted |K(X)|.

We will need the following result due to McCord:

Theorem 1.5. A finite T0-space X is of the same weak homotopy type as the
geometric realization of its associated simplicial complex.

The proof is fairly involved but can be found in [1] starting on page 12.

1.3. Cores of Finite Spaces.

Following May’s terminology,

Definition 1.6. Let X be a finite space. An upbeat point is a point x for which
there exists some y > x such that if z > x then z ≥ y. A downbeat point is a point
x for which there exists some y < x such that if z < x then z ≤ y. A point that is
either upbeat or downbeat is referred to as a beat point.

Definition 1.7. A finite T0-space is minimal if it has no beat points. A core of a
finite space X is a subspace Y that is minimal and is a deformation retract of X.

We need the following fact to prove an important result about cores:

Lemma 1.8. If f and g are functions between two finite spaces and f ≤ g then
f ' g. Furthermore, if f ' g then there exists a sequence of functions {f =
f1, f2, . . . , fq = g} such that either fi ≤ fi+1 or fi+1 ≤ fi for i < q.

The above result requires quite a few lemmas that are not directly related to the
topic at hand, but a good exposition can be found in [3] on page 18.

Theorem 1.9. Every finite T0-space has a core.

Proof. Suppose that a finite T0-space X has an upbeat point and consider X−{x}
which we shall show is a deformation retract of X. Define f : X → X − {x} such
that f(z) = z if z 6= x and f(x) = y where y is the point that makes x upbeat.
Suppose that for u, v ∈ X, u ≤ v. Clearly if u = v = x or if u 6= x, v 6= x then
f(u) ≤ f(v). Alternatively if u = x and x < v then because x is an upbeat point
f(u) = y ≤ f(v) = v or if v = x and u < x then f(u) = u < x < y = f(v) again
because x is an upbeat point. Because clearly f ≥ id, by the lemma above, f ' id
so it is a deformation retract. An analogous argument applies to downbeat points.
Thus, by successively removing the beat points of X, we obtain in finitely many
steps a deformation retract of X with no beat points. �

We shall also need the following result recorded in both [3] (page 22) and [1]
(page 8):

Theorem 1.10. Let X and Y be finite spaces. X and Y are homotopy equivalent
if and only if their cores are homeomorphic.
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2. The Euler Characteristic

2.1. Defining the Euler Characteristic.

We now have the machinery we need to define the Euler characteristic for finite
spaces. For a space X with homology groups that are finitely-generated graded
abelian groups, the Euler characteristic is defined as χ(X) =

∑
n≥0

(−1)n · bi(X)

where bi is the i-th Betti number of X, that is bi(X) = rank(Hi(X)). For our pur-
poses it will useful to adopt a different definition of the Euler characteristic. To do
this we require the purely algebraic fact that for a short exact sequence of finitely
generated abelian groups 0→ A→ B → C → 0, rank(B) = rank(A) + rank(C).

Theorem 2.1. Let X be a compact CW-complex. Then χ(X) =
∑

n≥0
(−1)ncn where

cn is the number of n-cells contained in the complex.

Proof. Let
0 −→ Ck

dk−→ Ck−1 → . . .→ C1
d1−→ 0

be the chain complex of chain groups of the CW-complex and the di are the bound-
ary maps. Letting Bi = im(di+1) and Zi = ker(di) we have following short exact
sequences:

0→ Zi
i
↪−→ Ci

di−−−� Bi−1 → 0

0→ Bi
di+1−−−→ Zi

q−→ Hi → 0
By the lemma mentioned above, we have that

rank(Ci) = rank(Zi) + rank(Bi−1)
rank(Zi) = rank(Bi) + rank(Hi)

By substituting the second equation into the first, multiplying the resulting equality
by (−1)i and then summing over i, the Bi terms will cancel, giving

∑
n≥0

(−1)ncn =∑
n≥0

(−1)n · bi(X) as desired. �

By regarding simplicial complexes as special cases of CW-complexes, we may use
this result to deduce that the for a finite T0-space, χ(X) =

∑
C∈C(X)

(−1)]C+1 where

C(X) is the set of non-empty chains of X and ]C is the cardinality of some element
of that set.

2.2. Homotopy Invariance.

Using this last definition we can prove for finite spaces that the Euler characteristic
is homotopy invariant.

Theorem 2.2. Let X and Y be finite T0-spaces that are homotopy equivalent. Then
χ(X) = χ(Y ).

Proof. Let Xc and Yc be the cores of X and Y respectively, which must exist by
1.9. 1.10 implies that Xc and Yc are homeomorphic and thus χ(Xc) = χ(Yc). As
per 1.9, we may think of Xc as part of a sequence of subspaces of X, where each
successive element in the sequence is generated by removing a beat point. Thus, it
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suffices to show that removing a beat point does not affect the Euler characteristic.
Let P be a finite poset with beat point p, where there must exist some q such that
if r is comparable with p then r is also comparable with q. We can then construct
a bijection

ϕ : {C ∈ C(P ) | p ∈ C, q 6∈ C} → {C ∈ C(P ) | p ∈ C, q 6∈ C}
C 7→ C ∪ {q}

We may thus write:

χ(P )− χ(P − {p}) =
∑

p∈C∈C(P )

(−1)]C+1 =
∑

q 6∈C3p

(−1)]C+1 +
∑

q∈C3p

(−1)]C+1 =

∑
q 6∈C3p

(−1)]C+1 +
∑

q 6∈C3p

(−1)]ϕ(C)+1 =
∑

q 6∈C3p

(−1)]C+1 +
∑

q 6∈C3p

(−1)]C = 0

�

3. The Möbius Function

The Euler characteristic of finite T0-spaces is particularly interesting because of
its relationship to the Möbius function of posets. To define the Möbius function we
first define an incidence algebra A on P . A(P ) is the set of functions P × P → R
such that for f ∈ A(P ), f(x, y) = 0 if x 6≤ y. This forms a vector space over R
where we have a product defined as

fg(x, y) =
∑
z∈P

f(x, z)g(z, y)

We let ζp ∈ A be the function such that ζp(x, y) = 1 whenever x ≤ y. This function
has an inverse in A which we call the Möbius function and denote µp. Note that
ζp(x, y) is invertible according to [1] page 26. The identity of A is

δ(s, t) =
{

1 : s = t
0 : s 6= t

Note that in equations where elements of A are added to some integer that integer
simply denotes a multiple of δ.
It follows directly from the definition of the multiplication that:

ζ2(s, u) =
∑

s≤t≤u

1

so we may deduce that ζ2(s, u) is the number of chains of length 2 between s and
u (note that the length is given as the number of elements minus 1). Similarly

ζk(s, u) =
∑

s=s0≤s1≤...≤sk=u

1

which is the number of chains of length k. Observing that

(ζ − 1)(s, u) =
{

1 : s < u
0 : s = u

we can use (ζ−1)k to count the number of strictly-increasing chains. Note further-
more that

(2− ζ)(s, t) =
{

1 : s = t
−1 : s < u
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Proposition 3.1. (2−ζ)−1(s, t) gives the total number of strictly increasing chains
from s to t.

Proof. Let ` be the length of the longest chain between s and t so that
(ζ − 1)`+1(u, v) = 0 for s ≤ u ≤ v ≤ t. For such u and v

(2− ζ)[1 + (ζ − 1) + (ζ − 1)2 + . . .+ (ζ − 1)`](u, v) =
[1− (ζ − 1)][1 + (ζ − 1) + (ζ − 1)2 + . . .+ (ζ − 1)`](u, v) =

[1− (ζ − 1)`+1](u, v) = δ(u, v)

The equality from the second line to the third comes from multiplying out so that
all of the central terms cancel. Because δ is the identity,
(2− ζ)−1 = 1 + (ζ − 1) + (ζ − 1)2 + . . .+ (ζ − 1)` when restricted to the elements
between some s and t. But as explained above, (ζ−1)k are just the chains of length
k between s and t so it follows that (2− ζ)−1 is the total number of chains from
s to t. �

The following theorem connects the combinatorial notion of the Möbius function
to the topological notion of the Euler characteristic:

Theorem 3.2 (Hall’s Theorem). Let P be a finite poset and let P̂ be P ∪ {0̂, 1̂}
where 0̂ and 1̂ are minimum and maximum elements. Let ci be the number of
strictly increasing chains between 0̂ and 1̂ of length i. Then

(3.3) µP̂ (0̂, 1̂) = c0 − c1 + c2 − c3 + . . .

Proof.

µP̂ (0̂, 1̂) = (1 + (ζ − 1))−1(0̂, 1̂)
= (1− (ζ − 1) + (ζ − 1)2 − . . .)(0̂, 1̂)
= 1(0̂, 1̂)− (ζ − 1)(0̂, 1̂) + (ζ − 1)2(0̂, 1̂)− . . .
= c0 − c1 + c2 − . . .

�

This expression is very close to the expression developed for the Euler character-
istic. Indeed the only difference is that when computing the Euler characteristic,
the empty-set is not regarded as a face of the simplicial complex whereas in this
expression it is, entering the sum as −1. Thus by defining the reduced Euler char-
acteristic, χ̃(X) = χ(X)− 1 we have the following remarkable fact:

Proposition 3.4. Let P be a finite poset.

(3.5) µP̂ (0̂, 1̂) = χ̃(K(P )).

For more information on Hall’s theorem or Proposition 3.4 see [4] pages 307-8.
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