
TOWARDS THE PRIME NUMBER THEOREM

ERIC ANTLEY

Abstract. Originally proven by Jacques Salomon Hadamard and Charles
Jean de la Valle-Poussin independently in 1896, the prime number theorem

shows the number of primes less than or equal to a given number x approaches
x

log x
as x tends towards infinity. In this paper, a proof using complex analysis

will be given to prove this statement.
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Let P be the set of primes. We define the function π(x) to be the prime counting
function.

Definition 0.1. Given a real number x, π(x) is the the cardinality of the set
{p ∈ P|p ≤ x}.

Theorem 0.2 (The Prime Number Theorem). We have the following limit behav-
ior:

π(x) ∼ x

log x
.(0.3)

1. The Chebyshev Functions and Their Properties

We define the function ν(x) to be the first Chebyshev function.

Definition 1.1. Given a real number x, we define ν(x) to be the sum
∑
{p∈P|p≤x} log p.

We define the function ψ(x) to be the second Chebyshev function.

Definition 1.2. Given a real number x, we define ψ(x) to be the sum over primes
p and natural numbers k of

∑
{p∈P|pk≤x} log p.

We define the function Λ(x) to be the von Mangoldt function.

Definition 1.3. Given a real number x, we define Λ(x) to be log p if pk = x where
p is some prime and 0 else, where k ∈ Z.
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Clearly, ψ(x) =
∑
n≤x Λ(n).

The prime counting function π(x) is by definition what we are investigating, yet
this function is very “unnatural.” For now, the reader can understand this as simply
meaning that it is a difficult function to work with, although easy to comprehend.
On the other hand, the function ψ(x) is a very “natural” function. We will see later
that ψ(x) is strongly related to a deceptively simple looking infinite sum known as
the Riemann zeta function which is deeply rooted in number theory. Our first goal
will be to examine ψ(x) and related functions in order to show that properties
of ψ(x) imply the Prime Number Theorem, but first we will show that ψ(x) is
Θ(x). This means that for constants A and A′ with sufficiently large x, we have
Ax ≤ ψ(x) ≤ A′x. We will use this in section 3. From now on, we assume the
symbol p denotes a prime number.

Lemma 1.4. ψ(x) =
∑
p≤xb

log x
log p c log p.

Proof. We now attempt to find an expression that assigns the correct “weight” to
each log p. By definition, ψ(x) =

∑
p∈P,pk≤x log p. Let p ∈ P and k ≥ 0 be such

that pk ≤ x and pk+1 > x. Note p contributes k log p to ψ(x). Let x = pkα.
Then we see that logp x = logp (pkα) = k logp p + logp α = k + logp α. Now, α
is necessarily less than k, so bk + logy αc = k. Thus, we can express ψ(x) as the
sum:

∑
p≤xblogp xc log p. Finally, we apply the change of log base formula to get∑

p≤xblogp xc log p = ψ(x) =
∑
p≤xb

log x
log p c log p. �

We now turn our attention to estimating the size of ψ(x), but first we will
require a few more definitions that will be used to describe the limiting behavior of
functions.

Definition 1.5. o(f(x))
Let f(x) and g(x) be functions. We say that g(x) = o(f(x)) if for all ε > 0 there

exists an x0 such that for all x > x0 we have |g(x)| ≤ ε|f(x)|.
Definition 1.6. O(f(x))

Let f(x) and g(x) be functions. We say that g(x) = O(f(x)) if there exists an
M > 0 such that for all x > x0 we have |g(x)| ≤M |f(x)|.
Definition 1.7. Θ(f(x))

Let f(x) and g(x) be functions. We say that g(x) = Θ(f(x)) if there exist A
and A′ such that for all x > x0 we have Ag(x) ≤ f(x) ≤ A′g(x).

Lemma 1.8. ψ(x) = ν(x) +O(x
1
2 (log x)2).

Proof. First, we note that ψ(x) =
∑∞
m=1 ν(x

1
m ). This is a quick check which follows

from the fact that pk ≤ x is equivalent to p ≤ x
1
k . Now, it is trivial to see that

for x > 1 we have ν(x) < x log x. Thus for m > 2, ν(x
1
m ) < x

1
m log x ≤ x

1
2 log x.

Now consider the sum
∑

2≤m ν(x
1
m ). There are O(log x) terms of this sum because

ν(x
1
m ) = 0 if m > log2 x, and each term is O(x

1
2 log x). Therefore:

ψ(x) =

∞∑
m=1

ν(x
1
m ) = ν(x) +

∑
2≤m

ν(x
1
m ) = ν(x) +O(x

1
2 log x)O(log x)

= ν(x) +O(x
1
2 (log x)2).

(1.9)
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Theorem 1.10. There exist constants A and A′ such that for large x ∈ N we have
Ax < ψ(x) < A′x. Therefore ψ(x) = Θ(x).

Proof. By the binomial theorem,
(
2m+1
m

)
= (2m+1)!

m!(m+1)! = (2m+1)(2m)...(m+2)
m! . Set M

equal to this expression. Then since M occurs twice as a term of the expansion
of (1 + 1)2m+1, 2M < 22m+1. Thus, M < 22m, and logM < 2m log 2. Now, it’s
obvious that if m+ 1 < p ≤ 2m+ 1, then p must be equal to only one of the terms
in the numerator of M . Thus the product of all primes satisfying the previous
inequality must divide the numerator of M , so

∏
m+1<p≤2m+1 p ≤M . We have,

ν(2m+ 1)− ν(m+ 1) =
∑

m+1<p≤2m+1

log p ≤ logM < 2m log 2.(1.11)

Now, for n = 1 or n = 2, it is clear that ν(n) < 2n log 2. To show this inequality
holds for all n ∈ N, we proceed by induction. Assume it holds for all n ≤ x− 1 for
some natural number x > 2. If x is even, then x is not prime. Thus ν(x) = ν(x−1)
and ν(x) < 2(x− 1) log 2 < 2x log 2. On the other hand, if x is odd, then for some
n we have x = 2n+ 1. By our previous work, we see that:

ν(x) = ν(2n+ 1)− ν(n+ 1) + ν(n+ 1) < 2n log 2 + 2(n+ 1) log 2 = 2x log 2.

(1.12)

Note that we were able to bound ν(n + 1) because n + 1 < x, so our induction
held up to n+1 by assumption. Since we have shown the inductive step holds for x
odd or even, ν(n) < 2n log 2 = O(n), which in turn implies ψ(n) = O(n). We will

now show that the bound is tight. Recall that x! =
∏
p p
bx/pc+bx/p2c+bx/p3c+.... Let

N =
(
2n
n

)
= 2n!

n!2 . We can write this as the product:
∏
p p

∑∞
i=1b

2n

pi
c−2b n

pi
c
. Notice

that each term of the sum is either one or zero; this follows from simple properties
of the floor function. Furthermore, every term of the sum is zero after pi exceeds
2n. Therefore:

∞∑
i=1

b2n
pi
c − 2b n

pi
c ≤

blogp 2nc∑
i=1

1 = blogp 2nc = b log 2n

log p
c.(1.13)

We see that

logN =
∑
p≤2n

(
2n∑
i=1

(b2n
pi
c − 2b n

pi
c)

)
log p ≤

∑
p≤2n

b log 2n

log p
c log p = ψ(2n).(1.14)

Finally, we see that N = n+1
1

n+2
2 ... 2nn . Observe each term in this product is

greater than or equal to 2 and there are n terms. Thus we have 2n ≤ N and
n log 2 ≤ logN ≤ ψ(2n). If 1 ≤ n = b 12xc we see that:

1

4
x log 2 ≤ n log 2 ≤ ψ(2n) ≤ ψ(x).(1.15)

Therefore, Ax < ψ(x) < A′x. �

Corollary 1.16. ψ(x)
x is bounded.
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Proof. By Theorem 1.10, for natural numbers x we have 0 ≤ ψ(x) = O(x). There-
fore there exists an M such that for all x > x0 we have ψ(x) ≤ Mx. Division by

nonzero x gives ψ(x)
x ≤ M for x > x0. For the remaining number of finite natural

numbers n less than or equal to x0, ψ(n) <∞. Therefore ψ(x)
x is bounded. �

We now wish to restate the Prime Number Theorem in the language of a function
whose properties are now familiar to us, ψ(x).

Theorem 1.17. The Prime Number Theorem is equivalent to limx→∞
ψ(x)
x = 1.

Proof. We must show that limx→∞
ψ(x)
x = limx→∞

π(x)
x/(log(x)) . For that, we take the

difference:

∣∣∣∣ π(x)

x/(log(x))
− ψ(x)

x

∣∣∣∣ =

∣∣∣∣∣
∑
p≤x log(x)

x
−
∑
p≤xb

log x
log p c log p

x

∣∣∣∣∣ ≤ 1

x

∑
p≤x

log(x)− log(p).

(1.18)

Now, fix a ε > 0. We split the sum as follows:

1

x

∑
p≤x

log(x)− log(p) =
1

x

∑
p≤x1−ε

log(x)− log(p) +
1

x

∑
x1−ε<p≤x

log(x)− log(p).

(1.19)

Now for the first term, we note that − log p < 0 and there are at most x1−ε terms
in the sum. Thus, 1

x

∑
p≤x1−ε log(x)− log(p) ≤ 1

xx
1−ε log x = log x

xε = o(1). For the

latter term, we note that for some constant c, log x − log p < log x − log x1−ε =
ε log x = cε log p. Namely we can take c = c(ε) = 1

(1−ε) . Hence:

1

x

∑
x1−ε<p≤x

log(x)− log(p) ≤ 1

x

∑
x1−ε<p≤x

εc(ε) log p = εc(ε)
∑

x1−ε<p≤x

log p

x
≤ εc(ε)ψ(x)

x
.

(1.20)

Thus | π(x)
x/(log(x)) −

ψ(x)
x | ≤ o(1) + εc(ε)ψ(x)x , and by applying Corollary 1.16,

| π(x)
x/(log(x) −

ψ(x)
x | ≤ o(1) + εc(ε)M . Note that as ε goes to 0, c(ε) goes to 1. Since

ε was arbitrary, for any positive quantity δ, we can pick ε close enough to 0 such

that | limx→∞
π(x)

x/(log(x)) −
ψ(x)
x | < δ which implies limx→∞

ψ(x)
x = 1. Conversely,

assuming limx→∞
ψ(x)
x = 1 implies limx→∞

π(x)
x/(log(x)) = 1. Thus PNT is equivalent

to limx→∞
ψ(x)
x = 1. �

This momentarily concludes our study of ψ(x), and we now turn our attention
to the Riemann Zeta Function.

2. The Riemann Zeta Function

Definition 2.1. Dirichlet Series and ζ(z)
A Dirichlet series is a series of the form F (z) =

∑∞
n=1

αn
nz . In particular, we will

be interested in the simplest to define infinite Dirichlet series, the Riemann zeta
function: ζ(z) =

∑∞
n=1

1
nz .
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Definition 2.2. Re(z)
Let z ∈ C. We may write z as a + bi. Then we define Re(z) to be the fuction

such that Re(z) = a.

Definition 2.3. Complex Logarithm
For z ∈ C, log z = w iff z = ew.

Though not apparent at first glance, the Prime Number Theorem is deeply con-
nected to the series

∑∞
n=1

1
nz . We will see that PNT is strongly related to the

fact that the zeta function has no zeroes for values of z with real part 1, and thus
showing this will be crucial to our proof. We begin with a short investigation of
some properties of complex functions and relate the zeta function to a product of
primes.

The first thing we need in order to prove the function ζ(z) has no zeroes for z
with real part 1 is to examine some properties of the complex logarithm.

Lemma 2.4. log |z| = Re(log z) and |ez| = Re(ez) for z ∈ C.

Proof. Let z be a complex number such that z = a + bi. For some r and angle
θ, we can write z in polar coordinates as reiθ. Thus log z = log reiθ = iθ + log r.
Recall that r is simply a distance defined by the hypotenuse of a right triangle with
a base a units in the real direction and a side of b units in the imaginary direction.
Therefore, r =

√
a2 + b2. Now, consider log |z|. By the definition of absolute value,

we have:

log |z| = log
√
a2 + b2 = log r = Re(logw).(2.5)

Thus, the logarithm of an absolute value of a complex number is just the real
part of the log. Similarly, consider |ez| = |ea+bi|. By Euler’s formula, we have
ebi = cos b+ i sin b. Thus we have:

|ea+bi| = |eaebi| = |ea|
√

cos b2 + sin b2 = |ea|.(2.6)

But for real numbers ea > 0 so |ez| = Re(ez). �

Lemma 2.7. The Riemann Zeta function converges for z ∈ C satisfying Re(z) > 1.

Proof. Let z = a + bi be as in the statement of the lemma. By definition ζ(z) =∑∞
n=1

1
nz . Let ε > 0 be given. We need to show that there exists m > 0 such that

for all n ≥ m we have |
∑∞
n=m

1
nz | < ε. By the triangle inequality, we have:

|
∞∑
n=m

1

nz
| ≤

∞∑
n=m

| 1

nz
| =

∞∑
n=m

1

na
<

∫ ∞
m

1

xa
dx.(2.8)

But for m > 0, the integral in the above inequality is convergent. Therefore
there must exist an m satisfying

∫∞
m

1
xa dx < ε. �

Theorem 2.9. For Re(z) > 1,
∏
p

1
1−p−z converges and is equal to

∑∞
n=1

1
nz .

Proof. Let z = a+ bi be such that Re(z) > 1. Because every prime is greater than
1, we have the following:

1

1− p−z
= 1 + p−z + p−2z + p−3z + · · ·(2.10)
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Let Pi be the series generated from the ith prime. Now consider the prod-

uct of the first j such series. We may write this as
∏j
i=2 Pi. Before simplify-

ing, this product is equal to the sum of complex numbers in the form of n−z =

2−α2z3−α3z5−α2z · · · p−αjzj , where each α is some whole number greater than or
equal to 0 and n is some natural number. Due to the fundamental theorem of
arithmetic each term of the series is distinct. Furthermore, we note that a number
in the base of n−αiz will be a term of this series iff n has no prime factors greater
than pj . We now define the following index set:

(Wj) = {n ∈ N| n has a prime factorization with no prime greater than pj}.
(2.11)

Therefore the product of the series generated by the first j primes is as such:

j∏
i=1

1

1− p−z
=

j∏
i=1

Wi =
∑
(Wj)

n−z.(2.12)

Finally, note that the index set (Wj) contains every natural number up to pj in
addition to infinitely more. Thus we have the following inequality:

∣∣∣∣∣∣
∞∑
i=1

n−z −
∑
(Wj)

n−z

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∞∑

n=pj+1

n−z

∣∣∣∣∣∣ ≤
∞∑

n=pj+1

∣∣n−z∣∣ =

∞∑
n=pj+1

∣∣∣∣ 1

ez logn

∣∣∣∣ =

∞∑
n=pj+1

∣∣∣∣ 1

na

∣∣∣∣ .
(2.13)

By applying the comparison test to
∫∞
1

1
xa dx with a > 1, the rightmost sum

converges to 0 as pj tends towards ∞. We conclude
∑∞
n=1

1
nz =

∏
p

1
1−p−z . �

We may now proceed with showing that ζ(z) 6= 0 for any z with real part greater
than 1.

Corollary 2.14. For z with real part greater than 1 we have ζ(z) 6= 0.

Proof. Notice that ζ(z)
∏
p(1 − p−z) = 1 for all z in this region. We know ζ(z)

is convergent for Re(z) > 1, so the first term of this product is finite. Moreover,
we have

∏
p(1 − p−z) is finite by Theorem 2.9. Thus, if ζ(z) was 0, we’d have a

contradiction since a finite value times 0 would be 0 and 0 6= 1. �

But what about ζ(z) for z with real part 1? Interestingly enough, ζ(z) has no
zeroes for these values either, but to prove this we are going to need to do some
analysis. In fact, this critical theorem is equivalent to the Prime Number Theorem!
Hence showing ζ(z) 6= 0 for z such that Re(z) = 1 will be essential to our goal of
proving PNT. Notice that our current definition of ζ fails to converge when we try
to evaluate z with real part less than or equal to 1. Therefore, our first step must
be finding an analytic continuation for ζ to investigate its behavior in this part
of the complex plane. By showing that ζ(z) − 1

z−1 has an analytic continuation

on C, we will show ζ(z) has an analytic continuation with a singularity at z = 1.
We will first require a couple of lemmata in order to find an analytic extension for
ζ(z)− 1

z−1 . But first we will state, though not prove, the following theorem about
convergence from Vitali.
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Theorem 2.15. Let {fn} be a locally bounded sequence of analytic functions in
a domain Ω such that limn→∞ fn(z) exists for each z belonging to a set E ⊂ Ω
which has an accumulation point in Ω. Then {fn} converges uniformly on compact
subsets of Ω to an analytic function.

Using this we may prove the following theorem.

Theorem 2.16. ζ(z)− 1
z−1 has an analytical continuation for Re(z) > 0.

Proof. Recall the partial summation formula:

n∑
k=m

fk(gk+1 − gk) = (fn+1gn+1 − fmgm)−
n∑

k=m

(fk+1 − fk)gk+1(2.17)

where f and g are sequences. Now, let fk be k and gk = 1
kz . Let Re(z) > 1. We

see that:

n−1∑
k=1

k((k + 1)−z − k−z) =
1

nz−1
− 1−

n−1∑
k=1

1

(k + 1)z
.(2.18)

Notice that each term of the left hand side is:

k((k + 1)−z − k−z) = −kz
∫ k+1

k

t−z−1dt = −z
∫ k+1

k

btct−z−1dt.(2.19)

Thus we have:

n∑
k=1

1

kz
= 1 +

n−1∑
k=1

1

(k + 1)z
=

1

nz−1
−
n−1∑
k=1

−z
∫ k+1

k

btct−z−1dt

=
1

nz−1
+ z

∫ n

1

btct−z−1dt.

(2.20)

Let n tend towards ∞ pointwise to obtain:

ζ(z) = z

∫ ∞
1

btct−z−1dt.(2.21)

Furthermore, consider the following:

z

z − 1
+ 1 = z

∫ ∞
1

t−zdt(2.22)

and,

ζ(z)− 1

z − 1
= 1 + z

∫ ∞
1

t−z−1(btc − t)dt.(2.23)

Recall from complex analysis that for s > 0:

|
∫
szds| ≤

∫
sRe(w)ds.(2.24)

We may apply this to obtain the following inequality:
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|
∫ n

1

(btc − t)t−z−1dt| ≤
∫ n

1

tRe(−z−1)dt ≤
∫ ∞
1

tRe(−z−1)dt =
1

Re(z)
.(2.25)

Now consider the sequence of analytic and single valued functions fn(z) =∫ n
1

(btc − t)t−z−1dt for z > 0. We have shown there exists an M such that
|fn(z)| ≤ M for all n, z on compact subsets. Then by Vitali’s Convergence The-
orem, limn→∞ fn(z) = f(z) =

∫∞
1

(btc − t)t−z−1dt is an analytic function. Thus,

1 + z
∫∞
1
t−z−1(b−tc − btc)dt is an analytic function and moreover is the analytic

extension of ζ(z) − 1
z−1 . This provides us with a way to evaluate ζ on the line

Re(z) = 1. �

The reader may be wondering what all of this has to do with ψ(x), as the
investigation as of yet does not seem to have any relationship with section 1. This
could not be further from the truth. We will see in our next theorem there exists a
stunning relationship between ψ(x) and the logarithmic derivative of the Riemann
zeta function.

Theorem 2.26. For Re(z) > 1 the logarithmic derivative of ζ(z) is ζ′(z)
ζ(z) =

−z
∫∞
1
ψ(x)x−z−1dx.

To prove this, we will unsurprisingly need to use the formula for the logarithmic
derivative of a product.

Lemma 2.27. Let fn be a sequence of functions such that each fn belongs to A(Ω)
and each

∑
|fn| converges uniformly on compact subsets of Ω. Then for every point

where g(z) =
∏∞
n=1(1+fn(z)) is nonzero, we have g′(z)

g(z) =
∑∞
n=1 f

′
i(x)

∏j
i6=k(1+fi(x))∏j
i=1(1+fi(x))

.

Proof. Let gj(z) =
∏j
i=1(1 + fi(z)). Recall the product rule for a collection of

functions, f1 through fj :

g′j(z)

gj(z)
=

d
dx

∏j
i=1(1 + fi(x))∏j

i=1(1 + fi(x))
=

j∑
n=1

f ′i(x)

∏j
i 6=k(1 + fi(x))∏j
i=1(1 + fi(x))

.(2.28)

Because gj(z) is nonzero, we are allowed to divide with impunity. Since gn
converges uniformly to g because each gn is analytic, g′n converges uniformly to g′

on each compact subset of Ω. Therefore, letting j tend towards infinity, we have
g′(z)

g(z)
=
∑∞
n=1 f

′
i(x)

∏j
i6=k(1+fi(x))∏j
i=1(1+fi(x))

. �

Proof. With that in mind, it is evident that we must take the derivative of a single
term of the product

∏
p

1
1−p−z to calculate the derivative of the whole product.

An easy calculation shows that d
dz

1
1−p−z = − pz log p

(1−pz)2 . Now we just plug into our

formula to get:
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ζ ′(z)

ζ(z)
=
∑
p

− pz log p

(1− pz)2

∏
q∈P:q 6=p

1
1−q−z

ζ(z)

=
∑
p

− pz log p

(1− p−z)2
ζ(z)(1− p−z) 1

ζ(z)

=
∑
p

− p
z log p

1− p−z
.

(2.29)

Recall the following fact about infinite series: If |r| < 1 then
∑∞
k=1

r
1−r converges.

We take pz to be r. Then we have −
∑
p
pz log p
1−pz = −

∑
p(
∑∞
k=1 p

−zk) log p. We note

that this is the sum over all ordered pairs of prime numbers p and natural numbers
k. Thus we can change the index set as follows:

−
∑
p

(

∞∑
k=1

p−zk) log p = −
∑

(p,k):k∈N

p−zk log p.(2.30)

Recall the definition of Λ(x) in section 1. Now let t = pk for some natural
number k and prime number p. Then we have:

−
∑

(p,k):k∈N

p−zk log p = −
∞∑
t=1

t−zΛ(t).(2.31)

We’d like to once again use equation (2.17). Sadly, there is no difference in this
series yet. However, using the relationship between ψ(x) and Λ(x) we can express
the series as such: ψ(x) =

∑
n≤x Λ(n), so ψ(x)−ψ(x−1) =

∑
x−1<n≤x Λ(n) = Λ(x).

Therefore for some large natural number L:

−
L∑
t=1

tk(ψ(t)− ψ(t− 1)) = −((ψ(L)(L+ 1)−z − 0)− (

L∑
t=1

((t+ 1)−z − t−z)ψ(t)))

= −ψ(L)(L+ 1)−z −
L∑
t=1

(t−z − (t+ 1)−z)ψ(t).

(2.32)

Since we know ψ(x) is of order x from before, and Re(z) > 1, the first term goes
to zero as L tends towards infinity. We can write the term (t−z − (t+ 1)−z) inside

the sum as the integral z
∫ t+1

t
x−z−1dx. Moreover, because over an interval of 1

unit, ψ(x) is constant, we may move it inside the integral. Hence:

−
∞∑
t=1

(t−z − (t+ 1)−z)ψ(t) = −
∞∑
t=1

z

∫ t+1

t

ψ(x)x−z−1dx

= −z
∫ ∞
1

ψ(x)x−z−1dx.

(2.33)

This is what was desired. �
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Before showing that ζ(1 + bi) 6= 0, we examine the behavior of ζ as we approach
1 from above by real numbers.

Lemma 2.34. For a ∈ R and a > 1, ζ(a)− 1
a−1 = O(1).

Proof. It is helpful to consider ζ(u) in the rather silly integral form:

ζ(a) =

∞∑
1

∫ n+1

n

(n−a)dx.(2.35)

Now, we add and subtract the same term to the right hand side to get:

ζ(a) =

∞∑
1

∫ n+1

n

(n−a − x−a)dx+

∫ ∞
1

x−adx.(2.36)

We’d like to integrate the final term. Notice:
∫∞
1
x−adx = 0 − 1

−a+1 = 1
a−1 since

a > 1. So to finish our lemma, we must simply show
∑∞

1

∫ n+1

n
(n−a − x−a)dx =

O(1). First we bound the term, recalling first that we restricted x such that it
satisfied n < x < n + 1 and have a > 1. Thus we can use the following series of
inequalities to help bound the term:

n−a − x−a <
∫ x

n

at−a−1dt <
a

n2
.(2.37)

But then
∑∞

1

∫ n+1

n
(n−a−x−a)dx is less than a

∑∞
1 n−2, a convergent sum. There-

fore we have ζ(a) − 1
a−1 = O(1). This implies that ζ has a simple pole of order 1

at a = 1, a fact that will be crucial in the next proof. �

Finally, we may show that ζ is zero free on the line Re(z) = 1.

Theorem 2.38. ζ(z) 6= 0 for z = 1 + bi where b ∈ R.

Proof. Our proof will consists of three parts: first we will use our experience with
the complex logarithm to come up with a new function h(z) related to ζ(z), show
h(z) obeys certain inequalities, and then assume ζ(z) has a zero for some z with
real part 1 and use limits to derive a contradiction. First, let z = a + bi, and use
the Euler product to express log ζ(z) as:

log(ζ(z)) = log(
∏
p

(1− p−z)−1) = −
∑
p

log(1− p−z)(2.39)

where the sum exists iff
∏
p(1 − p−z)−1 exists. Recall from analysis the Taylor

series expansion for log(1 − x). This is −
∑∞
k=1

(−1)k(−x)k
k . We substitute this in

for log(1− p−z) to get:

−
∑
p

log(1− p−z) =
∑
p

∞∑
k=1

(p−z)k

k
.(2.40)

Now we apply our previous lemma about complex logarithms composed with ab-
solute values to see that log |ζ(z)| is equivalent to:
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Re(
∑
p

∞∑
k=1

(p−z)k

k
) = Re(

∑
p

∞∑
k=1

(p−ak−bik)

k
) =

∑
p

∞∑
k=1

cos (bk log p)

kpak
.(2.41)

Now we define our auxiliary function α(a + bi) = log |ζ(a + 2bi)| + 3 log |ζ(a)| +
4 log |ζ(a + bi)| where a, b are real numbers. Conveniently, we can use equation
(2.41) to see the equality between:

α(a+ bi) =
∑
p

∞∑
k=1

cos (2bk log p) + 3 + 4 cos (bk log p)

kpak
.(2.42)

This function may seem to be pulled out of thin air, but in fact we can see that it is
the result of some elementary trigonometry. Notice for all θ, we have the following:
0 ≤ 2(1 + cos(θ))2 = 2 + 4 cos θ + 2(cos θ)2 = 3 + 4 cos θ + cos 2θ, from the use of
a double angle formula. Setting bk as our θ, we see that α(a + bi) has the very
important property that 0 ≤ α(a+ bi) for all a where ζ(a) is convergent. Since we
are trying to show that ζ(z) is zero free for z with real part 1, it doesn’t help us
too much if 0 ≤ α(a+ bi). An easy fix to this is to let both sides of this inequality
be exponents of Euler’s number. Thus we have:

e0 = 1 ≤ eα(a+bi) = elog |ζ(a+2bi)|+3 log |ζ(a)|+4 log |ζ(a+bi)| = |ζ(a+ 2ib)||ζ(a)|3|ζ(a+ bi)|4.
(2.43)

Finally, we have everything in order to set up our contradiction. Here we will use
our lemma that examines the behavior ζ(a) as a approaches 1 to show that ζ(1+bi)
could not possibly be 0. Assume for the sake of contradiction there exists some bi
such that ζ(1 + bi) = 0. We know from our previous study of ζ(a) that it behaves
like 1

a−1 + γ as a approaches 1. Hence, if we multiply it by a− 1, it will behave like
1 as it approaches 1. Thus if b 6= 0:

lim
a→1+

1

a− 1
|ζ(a+ 2bi)||ζ(a)|3|ζ(a+ bi)|4 = lim

a→1+
|ζ(a+ 2bi)||ζ(a)(a− 1)|3

∣∣∣∣ζ(a+ bi)

a− 1

∣∣∣∣4
= lim
a→1+

|ζ(a+ 2bi)|
∣∣∣∣ζ((a− 1) + 1 + bi)

a− 1
− ζ(1 + bi)

−1

∣∣∣∣4
= lim
a→1+

|ζ(a+ 2bi)||ζ ′(1 + bi)|

= L <∞.

(2.44)

The fact that the limit must be finite follows from our analytic continuation of
ζ′(z)
ζ(z) −

1
z−1 . However, since we have a > 1, there is the following contradiction:

lima→1+
1

a−1 ≤ lima→1+
1

a−1 |ζ(a+ 2bi)||ζ(a)|3|ζ(a+ bi)|4 = L which is absurd. We

conclude that ζ(z) 6= 0 for z = 1 + bi with b 6= 0. �
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3. Some Integral Transforms

We are nearing the end of our proof; however, we will require a bit more complex
analysis to finish the proof of the prime number theorem. We will prove Cauchy’s
Integral Formula, and then apply it to two integral transformations to show that
ψ(x)
x goes to 1 as x tends towards infinity, thus proving the Prime Number Theo-

rem. Now we turn our attention to stating Cauchy’s Integral Theorem and proving
Cauchy’s Integral formula.

Theorem 3.1. Let U be an open, simply connected subset of C. Let f : U → C be
a holomorphic function, and let γ be a rectifiable path i.e. a curve with finite length
in U whose initial point is equal to its end point. Then

∮
γ
f(z)dz = 0.

Theorem 3.2. Let U be an open subset of the complex plane, let f be analytic
such that f : U → C, and let C be a closed set contained in U . If we let γ be the
boundary of C, then we have for all z in the interior of C:

f(z) =
1

2πi

∮
C

f(t)

t− z
dt.(3.3)

Proof. Let Dr be a disc with radius r about z such that r is small enough to
be completely contained by the closed set C and be such that within the disk
|f(t)− f(z)| < ε for all t in the interior of D. Eventually we will take the limit as r

tends towards 0. We wish to evaluate
∮
C
f(t)
t−z dt. Because f is analytic, the contour

integral along Dr is the same as the contour integral along C by Cauchy’s Integral
Theorem. Thus we have:

1

2πi

∮
D

f(t)

t− z
dt =

1

2πi

∮
Dr

f(t)

t− z
dt.(3.4)

We split the above integral on the right hand side in two by adding and sub-
tracting a term:

1

2πi

∮
Dr

f(t)

t− z
dt =

1

2πi

∮
Dr

f(t)− f(z)

t− z
+ f(z)

1

2πi

∮
Dr

1

t− z
dt.(3.5)

Our task is to show that the right integral is in fact f(a). This can be seen by

letting t − z = reiθ. Then by substitution the right integral is
∫ 2π

0
ireiθ

reiθ
dθ = 2πi,

and everything cancels nicely and does not depend on the radius r. This just leaves
us with showing the first term tends towards 0 as r tends towards 0, but this holds
because:

| 1

2πi

∮
Dr

f(t)− f(z)

t− z
| ≤ 1

2π

∮
Dr

∣∣∣∣εdtr
∣∣∣∣ = ε.(3.6)

This completes the proof. �

Definition 3.7. Laplace Transform
Let f(t) be defined on t ∈ [0,∞). The Laplace Transform of f(t), denoted

by Lf(t), is the function G(z) =
∫∞
0
e−ztf(t)dt, where G(z) is a function of the

complex numbers.
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Our current goal to prove a theorem by Tauber. A word of caution: it is likely
the most difficult part of our proof of the Prime Number Theorem.

Theorem 3.8. Let F (t) be a piecewise continuous function bounded by 1 defined
on t ∈ [0,∞). Let G(z) = LF (t) =

∫∞
0
F (t)e−ztdt for z ∈ C. Note this function is

holomorphic on Re(t) > 0. Assume G has an analytic extension to a neighborhood
of the imaginary axis, Re(t) = 0. Then

∫∞
0
F (t)dt exists and is equal to G(0).

Proof. Let Gα(z) =
∫ α
0
F (t)e−ztdt. We need to show that limα→∞Gα(0) = G(0).

Let R be large; eventually we will let it tend towards infinity. Let C be the boundary
of the region {z ∈ C : |z| < R,−θ ≤ Re(z)}, where θ is a function of R such that
G(z) is analytic on C. We employ Cauchy’s integral formula to estimate the size
of G(0)−Gα(0). We have:

G(0)−Gα(0) =
1

2πi

∮
C

(G(z)−Gα(z))
1

z
dz.(3.9)

If we define C+ to be the portion of C with Re(t) > 0 and let v = Re(z) we have:∣∣∣∣G(z)−Gα(z)

z

∣∣∣∣ =
1

R

∣∣∣∣∫ ∞
α

F (t)e−ztdt

∣∣∣∣ ≤ 1

R

e−αv

v
.(3.10)

Observe that we may modify this equation by replacing the G,Gα with their prod-
ucts with eαz without changing the value of the integral because G(0)eα0 = G(0),
and Gα(0)eα0 = Gα(0). Furthermore, we can add 1

R2
1

2πi

∮
C

(G(z) − Gα(z))zdz to
the right hand side because (G(z) − Gα(z)) z

R2 is analytic and therefore doesn’t
contribute anything by Cauchy’s Theorem as we integrate over C. Thus we have:

G(0)−Gα(0) =
1

2πi

∮
C

(G(z)−Gα(z))eαz(1 +
z2

R2
)
dz

z
.(3.11)

Suppose |z| = R as it does on C+. Then 1
z + z

R2 = 2Re(z)
R2 . We see that:

|(G(z)−Gα(z))eαz(
1

z
+
z2

R2
)| ≤ 1

Re(z)

2Re(z)

R2
e−αzeαz =

2

R2
.(3.12)

Next we see that the contour integral over C+ must be bounded due to the ML
theorem which states that a contour integral is bounded by a function’s maximum
over a contour M times the arc length of the contour L. Applying this yields:

1

2πi

∮
C+

|(G(z)−Gα(z))eαz(1 +
z2

R2
)
dz

z
| ≤ 1

2πi

2

R2
πiR =

1

R
.(3.13)

where πiR is the arc length of C+. Clearly as R tends towards infinity, this part of
the difference between G(0) and Gα(0) tends towards 0. We must now deal with
C \C+ which we will call C−. First we apply the triangle inequality to this part of
the integral:

| 1

2πi

∮
C−

(G(z)−Gα(z))eαz(1 +
z2

R2
)
dz

z
| ≤ | 1

2πi

∮
C−

(G(z)eαz(1 +
z2

R2
)
dz

z
|

+ | 1

2πi

∮
C−

Gα(z)eαz(1 +
z2

R2
)
dz

z
|.

(3.14)
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By definition, |Gα(z)eαz(1+ z2

R2 ) 1
z | = |(

∫ α
0
F (t)e−ztdt)eαz(1+ z2

R2 ) 1
z |. Since Gα(z) is

an entire function, when we take its contour integral the value is independent of the
path and dependent on the initial and end points. Therefore we take the path to
again be a semicircle of radius R from iR to −iR in the second and third quadrants

of the complex plane. Thus we once more have 1
z + z

R2 = 2Re(z)
R2 . Observe:

|(
∫ α

0

F (t)e−ztdt)eαt
2Re(t)

R2
| ≤ 1

|Re(z)|
2|Re(z)|
R2

=
2

R2
.(3.15)

Applying the ML theorem gives | 1
2πi

∮
C−

Gα(z)eαz(1 + z2

R2 )dzz | ≤
1
R which must

tend towards 0 as R tends towards infinity. Finally we must find a way to estimate

| 1
2πi

∮
C−

(G(z)eαz(1 + z2

R2 )dzz |. To do this, we first find a constant B such that

|G(z)| ≤ B for z ∈ C−, and we pick a θ′ such 0 < θ′ < θ(R). We split the
integral into pieces such that the first integral evaluates over Re(z) ≤ −θ′ and the
other evaluates over −θ′ < Re(z). We can bound the integral corresponding to
Re(z) ≤ −θ′ by the ML theorem as follows:

| 1

2πi

∮
C−∩Re(z)≤−θ′

(G(z)eαz(1 +
z2

R2
)
dz

z
| ≤ | 1

2π
|B(

1

θ(R)
+

1

R
)e−θ

′α

∮
C−∩Re(z)≤−θ′

dz

≤ 1

2π
B(

1

θ(R)
+

1

R
)πRe−θ

′α

=
R

2
B(

1

θ(R)
+

1

R
)e−θ

′α.

(3.16)

Fixing R and θ′, this again tends towards 0 as α goes to infinity. This leaves the
final interval and the final step of our theorem. Recall we are integrating over
the half circle from iR to −iR. There are two sections of this arc which satisfy
C− ∩ Re(z) ≥ −θ′, thus we can bound the arc length of the integral over this set

by 2R arcsin θ′

R . Thus we estimate the final integral as follows:

| 1

2πi

∮
C−∩Re(z)≥−θ′

(G(z)eαz(1 +
z2

R2
)
dz

z
| ≤ 1

2π
B(

1

θ(R)
+

1

R
)2R arcsin

θ′

R
.(3.17)

Thus, by taking θ′ arbitrarily close to 0 we can make this final term as small as we
please. Let ε > 0 be given. Let R = 4

ε , fix θ(R) as discussed such that G is analytic
inside and on C. Then for sufficiently large α, we have |Gα(0)−G(0)| < ε. �

Definition 3.18. Mellin transform
Let f(x) be a function defined on x ∈ [0,∞). We define the Mellin transform of

the function f to be η(s) = s
∫∞
1
f(x)x−s−1dx.

Theorem 3.19. Let f be a nonnegative, piecewise continuous and nondecreasing
function on [1,∞) such that f(x) = O(x). Then η(s), the Mellin transform of f ,
exists for Re(s) > 1 and can be written as η(s) = s

∫∞
1
f(x)x−s−1dx. Moreover η

is an analytic function. Assume for some constant c, the function η(s) − c
s−1 has

an analytic extension to a neighborhood of the line Re(s) = 1. Then as x → ∞,
f(x)
x → c.

Recall that ζ′(z)
ζ(z) is the Mellin transform of ψ(x). Hence, once we prove this

penultimate theorem, PNT will be reduced to a series of applications of theorems
we’ve already shown.
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Proof. Let η, f be as in the statement of the theorem. Let H(t) = e−tf(et) − c.
H satisfies the first part of the hypothesis of the previous theorem. Therefore, the
following Laplace transformation G(s) =

∫∞
1

(e−tf(et)− c)e−stdt exists. Using the

change of variable formula for x = et we have G(s) =
∫∞
1

( 1
xf(x) − c)x−s dxx =∫∞

1
f(x)x−s−2dx − c

s = η(s+1)
(s+1) −

c
s . Since η(s + 1) − c

s has an analytic extension

to a neighborhood of the line Re(z) = 0 so does G. Therefore by our previous
theorem

∫∞
0
H(t)dt converges to G(0) because it satisfies the Tauberian theorem.

Thus
∫∞
1

( f(x)x −c)
dx
x exists. We stated that f is a nondecreasing function. Suppose

for the sake of contradiction there exists x′ such that x′ > 0 and b f(x
′)

x′ c − c ≥ 2ε.

Then we have x(c + ε) ≤ x′(c + 2ε) ≤ f(x′) ≤ f(x) for x′ < x < c+2ε
c+ε x

′. We now

take the integral from x′ to c+2ε
c+ε x

′:

∫ c+2ε
c+ε x

′

x′
(f(x)/x− c)dx

x
≥
∫ c+2ε

c+ε x
′

x′
(ε+ c− c)dx

x
= ε log

c+ 2ε

c+ ε
.(3.20)

But because the integral
∫∞
1

( f(x)x − c)dxx exists,
∫ b
a

( f(x)x − c)dxx must go to
0 as a and b get arbitrarily large. Thus for fixed ε letting x′ → ∞, we have∫ c+2ε

c+ε x
′

x′ (f(x)/x − c)dxx < ε log c+2ε
c+ε , a contradiction! Therefore, for all sufficiently

large x′, we have b f(x
′)

x′ c − c ≤ 2ε. Again, assume for the sake of contradiction

there exists x∗ such that x∗ > 0 and b f(x
∗)

x∗ c − c ≤ −2ε. Then for c−2ε
c−ε x

∗ ≤ x ≤ x∗
we have f(x) ≤ f(x∗) ≤ x∗(c − 2ε) ≤ x(c − ε). Now we integrate over x between
c−2ε
c−ε x

∗ and x∗:

∫ x∗

c−2ε
c−ε x

∗
(f(x)/x− c)dx

x
≤
∫ x∗

c−2ε
c−ε x

∗
(−ε+ c− c)dx

x
= ε log

c− 2ε

c− ε
.(3.21)

Note that the log c−2ε
c−ε < 0 because c − 2ε < c − ε. But again, for fixed c, ε

we have
∫ x∗
c−2ε
c−ε x

∗(f(x)/x − c)dxx > ε log c−2ε
c−ε for all x∗ sufficiently large due to the

convergence of the integral. Again we see for large enough x∗, bf(x
∗)c

x∗ − c ≥ −2ε

for fixed c, ε. Therefore f(x)
x → c. �

Now we have the Prime Number Theorem.

Theorem 3.22. limx→∞
π(x)
x log x = 1.

Proof. We recall that − ζ
′(z)
ζ(z) + 1

z−1 = z
∫∞
1
ψ(t)x−z−1dx + 1

z−1 has an analytic

extension to a region about the line Re(z) = 1. Moreover, ψ(x) is O(x), piecewise

continuous, and nonnegative. By our previous theorem we have ψ(x)
x → 1 as x→∞.

Finally, we have shown the logical equivalence between the statement ψ(x)
x → 1 as

x→∞ and the Prime Number Theorem. �
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