
HYPERBOLIC PLANE AS A PATH METRIC SPACE

QINGCI AN

Abstract. We will study the quantities that are invariant under the action of

Möb(H) on hyperbolic plane, namely, the length of paths in hyperbolic plane.

From these invariant elements, we construct an invariant notion of hyperbolic
distance on H and explore some of its basic properties. And we will prove that

Möb(H)= Isom(H, dH).
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1. Introduction and Basic Definitions

Hyperbolic geometry is a non-Euclidean geometry in which the parallel postulate
in Euclidean geometry does not hold. In hyperbolic geometry, for any given line L
and a point p not in L, there exist at least two distinct lines through p that are
parallel to L. Hyperbolic space is a a model for hyperbolic geometry. It could be
two-dimensional or higher. And there are several models for hyperbolic space, for
instance the hyperboloid model, the Klein model, the Poincaré ball model and the
Poincaré half space model. For any two of the above models, there exist transfor-
mations between them that preserve geometric properties. In this paper, we use
the upper half plane to model the hyperbolic plane and we will explore geometries
in the hyperbolic plane. The upper half-plane model is defined to be H = {z ∈ C|
Im(z) > 0}. And we will refer to the real axis by R .

We are going to define a hyperbolic line in H in terms of Euclidean lines and
circles in C.

Definition 1.1. A hyperbolic line in H is either the intersection of H with a Eu-
clidean line in C perpendicular to R or the intersection of H with a Euclidean circle
centered on R.
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Figure 1.1: Hyperbolic lines

Proposition 1.2. For each pair of distinct points, p and q, in H, there exists a
unique hyperbolic line l through p and q.

Proof. There are two cases to consider. Case 1: Suppose Re(p) = Re(q). Then
the Euclidean line L = {z ∈ C |} Re(z) = Re(p)} passes through p and q and is
perpendicular to R. By the uniqueness of the Euclidean line, we see that l = H∩L
is the unique hyperbolic line through p and q.

Figure 1.2: Hyperbolic line determined by point p and q

p

q

Case 2: Suppose Re(p) 6= Re(q). Then let Lpq be the Euclidean line segment
joining p and q and let K be the perpendicular bisector of Lpq . Then K intersects
R at a unique point c and |c−p| = |c−q|. Then let C be a Euclidean circle centered
at c with radius |c− p|. So l = H ∩ C is the desired unique hyperbolic line.

p

q

Figure 1.3: Hyperbolic line determined by point p and q

�

Hyperbolic geometry behaves differently from Euclidean geometry of parallel
lines, although the definitions of parallel for Euclidean lines and hyperbolic lines
are same.

Definition 1.3. If two hyperbolic lines are disjoint, then they are parallel.

Theorem 1.4. Let l be a hyperbolic line in H and let p be a point in H not in l,
there exist infinitely many distinct hyperbolic lines through p that are parallel to l.
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Proof. There are two cases to consider. First, suppose that l is contained in a Eu-
clidean line L and p is a point in H not in l. As p is not in L, p is on Euclidean
line K that is parallel to L. Since L is perpendicular to R, K is perpendicular to
R. Then K ∩H is a hyperbolic line through p and parallel to l. We can construct
another such hyperbolic line by taking a point x in R and let a be the hyperbolic
line through p and x. k and a are distinct because Re(x) 6=Re(p). And we can
construct infinitely many such hyperbolic lines because there are infinitely points
on R between  L and K.

Figure 1.4: Parallel hyperbolic lines

The second case is that l is contained in a Euclidean circle M . As p is in H
but not in L , there is a Euclidean circle N through p and concentric to M . As
concentric circles are disjoint, N ∩H is a hyperbolic line through p and parallel to
l. To construct another such hyperbolic line, take any point x on R between M
and N . Let a be the hyperbolic line through p and x. Then a is disjoint from l.
As there are infinitely many points between M and N , we can construct infinitely
many hyperbolic lines through p and parallel to l.

Figure 1.5: Parallel hyperbolic lines

�

To determine a reasonable group of transformations in H that take hyperbolic
lines to hyperbolic lines, we need to unify the two types of hyperbolic lines. By
stereographic projection, a Euclidean circle can be obtained from a Euclidean line
by adding a single point.

Definitions 1.5. By stereographic projection, we can construct Riemann sphere
C̄. As a set of points, the Riemann sphere is the union of the complex plane C with
a point not in C, which we denote by ∞, which means C̄ = C ∪ {∞}. We also
define the extended real axis R̄ = R ∪ {∞} . A circle in the Riemann sphere C̄ is
either a Euclidean circle in C or a Euclidean line in C with {∞}.
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Figure 1.6: Stereografic projection

There is a class of continuous functions from C̄ to C̄ that are especially well
behaved.

Definitions 1.6. A function f : C̄ → C̄ is a homeomorphism if f is bijective and
both f and f−1 are continuous.

The homeomorphisms of C̄ are the transformations of C̄ that are of most interest
of us. We denote the group of homeomorphisms by Homeo(C̄) = {f : C̄→ C̄ | f is
a homeomorphism}. By definition, the inverse of a homeomorphism is also a home-
omorphism and the composition of two homeomorphisms is also a homeomorphism.
And the identity homeomorphism is the function f : C̄→ C̄ given by f(z) = z. So
Homeo(C̄) is a group.

2. The General Möbius Group and Möb(H)

As every hyperbolic line in H is contained in a circle in C̄, in order to determine
the transformations of H that take hyperbolic lines to hyperbolic lines, we first
determine the group of homeomorphisms of C̄ taking circles C̄ to circles in C̄. We
let HomeoC(C̄) denote the subset of Homeo(C̄) that contains homeomorphisms of
C̄ taking circles in C̄ to circles in C̄.

Definition 2.1. A Möbius transformation is a function m : C̄→ C̄ of the form

m(z) =
az + b

cz + d

where a, b, c, d ∈ C and ad−bc 6= 0. We denote the set of all Möbius transformations
by Möb+.

Lemma 2.2. The element f of Homeo(C̄) defined by

f(z) = az + b for z ∈ C and f(∞) =∞, where a, b ∈ C and a 6= 0,

is an element of HomeoC(C̄).

Proof. Given a circle in C̄ A = {z ∈ C̄ : αzz̄ + βz + β̄z̄ + γ = 0}, where α, γ ∈ R
and β ∈ C and α = 0 if and only if A is a Euclidean line. We want to show that if
z ∈ A, then w = az+ b satisfy a similar equation. We first consider the case α = 0.
Since w = az + b, we can substitute z = 1

a (w − b) into the equation obtaining

βz + β̄z̄ + γ = β
1

a
(w − b) + β̄

1

a
(w − b) + γ

=
β

a
w +

β̄

a
w̄ − 2Re(

β

a
b) + γ = 0
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This shows that w satisfies an equation of an Euclidean line. So f takes Euclidean
lines to Euclidean lines.

If α 6= 0, we have

αzz̄ + βz + β̄z̄ + γ = α
1

a
(w − b) 1

a
(w − b) + β

1

a
(w − b) + β̄

1

a
(w − b) + γ

=
α

|a|2
(w − b)(w − b) +

β

a
(w − b) +

β̄

a
(w − b) + γ

=
α

|a|2
|w +

β̄a

α
− b|2 + γ − |β|

2

α
= 0

So w satisfy an equation of a Euclidean circle. Hence f takes circles in C̄ to circles
in C̄.

�

Lemma 2.3. The element g of Homeo(C̄) defined by

g(z) =
1

z
for z ∈ C− {0}, g(0) =∞, and g(∞) = 0,

is an element of HomeoC(C̄).

The proof of Lemma 2.3 is similar to Lemma 2.2. In fact, Möb+ is generated by
f and g.

Theorem 2.4. Let m be a Möbius transformation m(z) = az+b
cz+d , where a, b, c, d ∈ C

and ad− bc 6= 0. If c = 0, then m(z) = a
dz + b

d . If c 6= 0, then m(z) = f ◦ g ◦ h(z),

where h(z) = c2(z) + cd for z ∈ C and h(∞) = ∞, g(z) = 1
z for z ∈ C − {0},

g(0) =∞, and g(∞) = 0, and f(z) = −(ad− bc)z + a
c for z ∈ C and f(∞) =∞.

The proof of Theorem 2.4 is just direct calculation. By Theorem 2.4 and Lemmas
2.2 and 2.3, we have that every Möbius transformation is an element of HomeoC(C̄),
as it is the composition of functions in HomeoC(C̄). So we have the following
theorem.

Theorem 2.5. Möb+ ⊂ HomeoC(C̄).

To extend Möb+ to a larger group, we consider the complex conjugation, C :
C̄ → C̄, C(z) = z̄ and C(∞) = ∞, which is not an element of Möb + but is an
element of HomeoC(C̄).

Lemma 2.6. The function C : C̄ → C̄, C(z) = z̄ and C(∞) = ∞ is an element
of HomeoC(C̄).

The proof of Lemma 2.6 is similar to the proof of lemma 2.2.

Definition 2.7. The general Moöbius group is the group generated by Möb+ and
the function C : C̄ → C̄, C(z) = z̄ and C(∞) = ∞. Let Möb denote the general
Möbius group.

Theorem 2.8. Möb = HomeoC(C̄)

Sketch of Proof:
By Lemma 2.8, we have that every element of Möb is an element of HomeoC(C̄).
Then we need to show that HomeoC(C̄) ⊂Möb. Let f be an element of HomeoC(C̄)
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and let n be the Möbius transformation taking the triple (f(0), f(1), f(∞)) to the
triple (0, 1,∞). So n ◦ f takes (0, 1,∞) to (0, 1,∞). As R̄ is the circle in C̄
determined by (0, 1,∞) and n ◦ f takes circles in C̄ to circles in C̄, n ◦ f(R̄) = R̄.
Therefore n ◦ f(H) is either the upper-half plane or the lower-half plane. In the
former case, set m = n. In the latter case, set m = C ◦ n. So m ◦ f is an element
of Möb such that m ◦ f(0) = 0, m ◦ f(1) = 1, m ◦ f(∞) = ∞, and m ◦ f(H) = H.
We show that m ◦ f is the identity by constructing a dense set of points in C̄, each
of which is fixed by m ◦ f . Hence f = m−1 is an element of Möb. This completes
the sketch of the proof of the Theorem 2.9.

Notations 2.9.
Möb(R̄) = {m ∈ Möb | m(R̄) = R̄}
Möb(H) = {m ∈ Möb | m(H) = H}

Theorem 2.10. Every element of Möb(R̄) is of one of the following form:
1. m(z) = az+b

cz+d with a, b, c, d ∈ R and ad− bc = 1;

2. m(z) = az̄+b
cz̄+d with a, b, c, d ∈ R and ad− bc = 1;

3. m(z) = az+b
cz+d with a, b, c, d purely imaginary and ad− bc = 1;

4. m(z) = az̄+b
cz̄+d with a, b, c, d purely imaginary and ad− bc = 1;

Theorem 2.11. Every element of Möb(H) is of one of the following form:
1. m(z) = az+b

cz+d with a, b, c, d ∈ R and ad− bc = 1;

2. m(z) = az̄+b
cz̄+d with a, b, c, d purely imaginary and ad− bc = 1;

One useful property of Möb(H) is the transitivity property.

Theorem 2.12. Möb (H) acts transitively on H, which means for every pair of
points x and y in H, there exists an element m of Möb(H) such that m(x) = y.

Proof. Notice that if for each point x in H, there exists an elementm of Möb(H) such
that m(x) = y0 for some point in H, then Möb(H) acts transitively on H. Because
for any two points x and z in H, if m1(x) = y0 = m2(z), then m−1

2 ◦m1(x) = z.
So we just need to show that for any point x in H, there exists an element m of
Möb(H) such that m(x) = i. Write x = a+ bi, where a, b ∈ R and b > 0. We first
move x to the imaginary axis using γ1(z) = z − a, so m1(x) = bi. Then we apply
γ2(z) = 1

b z to γ1(x), so γ2(γ1(x)) = i. By Theorem 2.11, γ1 and γ2 are elements of
Möb(H), hence so is γ2 ◦ γ1. �

Theorem 2.13. Möb(H) acts transitively on the set L of hyperbolic lines in H.

Proof. It is suffice to show that for each hyperbolic line l, there exists an element
m of Möb(H) that takes l to the imaginary axis I. Suppose z is a point in l. By
Theorem 2.11, there is an element m of Möb(H) such that m(z) = i. Let φ be the
angle between the two hyperbolic lines I and m(l), measured from I to m(l). For
each θ, the Möbius transformation nθ(z) = cos θz−sin θ

sin θz+cos θ lies in Möb(H) and fixes i.

And the angle between I and nθ(I) at i, measured from I to nθ(I) is 2θ. So if we

take θ = φ
2 , then m(l) = nθ(I), so n−1

θ ◦m(l) = I.
�
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3. Length and Distance in H

In this section, we will derive a means of measuring lengths of paths in H that
is invariant under the action of Möb, expressed as an invariant element of arc-length.

Theorem 3.1. For every positive constant c, the element of arc-length
c

Im(z)
|dz|

on H is invariant under the action of Möb(H)

Proof. Let ρ = c
Im(z) . We need to show that∫ b

a

ρ(f(t))|f ′(t)|dt =

∫ b

a

ρ(γ ◦ f(t))|γ′(f(t))||f ′(t)|dt

for every piecewise C1 path f : [a, b] → H and every element γ of Möb(H), which

also can be written as
∫ b
a

(ρ(f(t)) − ρ(γ ◦ f(t))|γ′(f(t))|)|f ′(t)|dt = 0. So for an
element γ of Möb(H), let µγ(z) = ρ(z)− ρ(γ(z))|γ′(z). We just need to show that∫

f

µγ(z)|dz| =
∫ b

a

µγ(f(t))|f ′(t)|dt = 0.

Now consider how µγ behaves under composition with elements of Möb(H). Let γ
and φ be elements of Möb(H). Then

µγ◦φ = µ(z)− µ((γ ◦ φ(z))|(γ ◦ φ)′(z)|

= µ(z)− µ((γ ◦ φ(z))|(γ′(φ)′(z))||φ′(z)|
= µ(z)− µ(φ(z))|φ′(z)|+ µ(φ(z))|φ′(z)| − µ((γ ◦ φ(z))|(γ′(φ)′(z))||φ′(z)|

= µφ(z) + µγ(φ(z))|φ′(z)|.
So if µγ = 0 for every γ in the generating set of Möb(H), then µγ=0 for every
element γ of Möb(H). A generating set for Möb(H) is

{γ1 = z + b, γ2 = az, γ3 = −1

z
, γ4 = −z̄|a, b ∈ R, a > 0}.

Then

µγ1 = ρ(z)− ρ(γ1(z))|γ′1(z)| = ρ(z)− ρ(z + b) = 0.

Similarly for γ2, γ3 and γ4, one can check that µγi = 0. This completes the
proof. �

We can not determine the specific value of c using only Möb(H). For easy cal-
culation, we set c =1.

Definition 3.2. For a piecewise C1 path f : [a, b] → H, we define the hyperbolic

length of f to be lengthH(f)=
∫ b
a

1
Im(f(t)) |f

′(t)|dt.

Definition 3.3. Suppose X is a metric space with metric d. We say that (X, d) is
a path metric space if for each pair of x and y in X,

d(x, y) = inf{length(f)|f is a path connecting x and y},
and there exists a distance-realizing path f such that d(x, y) = length(f).



8 QINGCI AN

Definition 3.4. For each pair of points x and y of H, let Γ[x, y] denote the set
of all piecewise C1 paths f : [a, b] → H with f(a) = x and f(b) = y. We define
the function dH : H × H → R, dH(x, y) = inf{lengthH(f)|f ∈ Γ[x, y]}. We refer to
dH(x, y) as the hyperbolic distance between x and y.

Proposition 3.5. For every element γ of Möb(H) and for every pair x and y of
points of H, we have that dH(x, y) = dH(γ(x), γ(y)).

Proof. Let f : [a, b] → H be a path in Γ[x, y] and γ be in Möb(H). As lengthH(f)
is invariant under Möb(H), we have lengthH(f)=lengthH(γ ◦ f). And observe that
for every path f ∈ Γ[x, y], γ ◦ f ∈ Γ[x, y]. So

dH(γ(x), γ(y)) = inf{ lengthH(g)|g ∈ Γ[γ(x), γ(y)]}
≤ inf{lengthH(γ ◦ f)|f ∈ Γ[x, y]}
≤ inf{lengthH(f)|f ∈ Γ[x, y]}

= dH(x, y).

Now consider γ−1, which is also an element of Möb(H). Then

dH(x, y) = inf{lengthH(f)|f ∈ Γ[x, y]}
≤ inf{lengthH(γ−1 ◦ g|g ∈ Γ[γ(x), γ(y)]}

≤ inf{lengthH(g)|g ∈ Γ[γ(x), γ(y)]}
= dH(γ(x), γ(y)).

Therefore, dH(x, y) = dH(γ(r), γ(y)). �

Theorem 3.6. (H, dH) is a path metric space.

Proof. First, we show that (H, dH) is a metric.

As lengthH(f) =
∫ b
a

1
Im(f(t) |f

′(t)|dt is nonnegative for all path f ∈ Γ(x, y), their

infimum dH(x, y) is nonnegative.

Let f : [a, b] → H be a path in Γ[x, y], and let h : [a, b] → [a, b] given by
h(t) = a+ b− t. Then f ◦ h ∈ Γ[y, x] and

lengthH(f◦h) =

∫ b

a

1

Im(f(h(t))
|f ′(h(t)||h′(t)|dt =

∫ b

a

1

Imf(s)|f ′(s)|
ds = lengthH(f).

So every path in Γ[x, y] can be reparametrized to become a path in Γ[y, x]. So
{lengthH(f)|f ∈ Γ[x, y]} = {lengthH(g)|g ∈ Γ[y, x]}, hence they have the same
infimum. So dH(x, y) = dH(y, x).

Now we prove the triangle equality by contradiction. Suppose that x, y, z are
points in H such that dH(x, z) > dH(x, y) + dH(y, z). Then let

ε = dH(x, z)− dH(x, y)− dH(y, z) > 0.

As dH(x, y) = inf{lengthH(f)|f ∈ Γ[x, y]}, there exists a path f in Γ[x, y] with
lengthH(f)−dH(x, y) < 1

2ε. Similarly there exists a path g in Γ[x, y] with lengthH(g)−
dH(y, z) < 1

2ε. Let h ∈ Γ[x, z] be the concatenation of f and g. Then

dH(x, z) < lengthH(h) = lengthH(f) + lengthH(g) < dH(x, y) + dH(y, z) + ε,
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which contradicts the construction of ε. So the triangle equality is satisfied by dH.

Then we show that there exists a path in H realizing the hyperbolic distance
between any pair of points of H, which implies that dH(x, y) > 0 if x 6= y. So let
x, y be a pair of distinct point in H and let l be the hyperbolic line passing through
x and y. By Theorem 2.13, there exists an element γ ∈Möb(H) so that γ(l) is
the positive imaginary axis in H. We can write γ(x) = µi and γ(y) = λi with
µ < λ. By Proposition 3.5, dH(x, y) = dH(γ(x), γ(y)). So we just need to prove
that there exist a distance-realizing path from µi to λi.We begin by calculating
the hyperbolic length of a specific path, f0 : [µ, λ] → H defined by f0(t) = it.

So lengthH(f0) =
∫ λ
µ

1
t dt = lnλµ .Then we show that lengthH(f0) ≤lengthH(f) for

any path f ∈ Γ[µi, λi]. Let f : [a, b] → H be defined by f(t) = x(t) + y(t)i.
Consider the path g : [a, b] → H defined by g = y(t)i, so g ∈ Γ[µi, λi]. Since
(x′(t))2 ≥ 0, lengthH(g) ≤lengthH(f). So we reduced ourselves to showing that if
g ∈ Γ[µi, λi][ is of the form g(t) = y(t)i, then lengthH(f0) ≤lengthH(g). The image
of g is the hyperbolic line segment joining αi and βi with α ≤ µ ≤ λ ≤ β. Define
h : [α, β] → H by h(t) = it. Then we have that lengthH(f0) = ln λ

µ ≤ ln β
α =

lengthH(h). Then we can write g = h ◦ (h−1 ◦ g), where h−1 ◦ g : [a, b] → [α, β]
is a surjective function. Therefore lengthH(h) ≤lengthH(g). This completes the
argument that lengthH(f0) ≤lengthH(f) for every path f in Γ[µi, λi]. Therefore,
for every pair of distinct points x and y in H, let l be the hyperbolic line through
x and y, and let γ be the element of Möb(H) taking l to the imaginary axis with
γ(x) = µi and γ(y) = λi where µ < λ. Define f0 : [µ, λ] → H by f0(t) = it. Then
γ−1 ◦ f0 is a distance-realizing path in Γ[x, y] .

�

4. Isometries in H

Definition 4.1. An isometry of a metric space (X, d) is a homeomorphism f of X
that preserves distance.

Proposition 4.2. Let x, y and z be distinct points in H. Then dH(x, y)+dH(y, z) =
dH(x, z) if and only if y is contained in the hyperbolic line segment joining x to z.

Proof. By Theorem 2.11 and Theorem 2.12, there exists an element m of Möb(H)
such that m(x) = i and m(z) = βi, 1 < β. Then dH(x, z) = dH(i, βi) = lnβ. Write
m(y) = a+bi. If y is contained in the hyperbolic line segment joining x and z, then
m(y) lies on the hyperbolic line segment joining m(x) and m(y). So a = 0, 1 < b < β

and dH(x, y) = ln b and dH(y, z) = ln β
b . Hence dH(x, y) + dH(y, z) = dH(x, z).

Suppose now that y is not contained in the hyperbolic line segment joining x to z.
There are two cases.
First case: a = 0, in other words, m(y) lies on the imaginary axis. Then we
have either 0 < b < 1 or b > β. If 0 < b < 1, then dH(x, y) = − ln b] and
dH(y, z) = lnβ − ln b.] As ln b < 0,

dH(x, y) + dH(y, z) = dH(x, z)− 2 ln b > dH(x, z).

If b > β, then dH(x, y) = ln b and dH(y, z) = ln b− lnβ. As ln b > dH(x, z),

dH(x, y) + dH(y, z) = 2 ln b− dH(x, z) < dH(x, z).
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The second case is that a 6= 0. Then dH(x, y) = dH(i, a + bi) < dH(i, bi) and
dH(y, z) = dH(a+ bi, βi) > dH(bi, βi). If 1 < b < β, then

dH(x, z) = dH(i, β) = dH(i, bi) + dH(bi, βi) < dH(x, y) + dH(y, z).

Similarly if 0 < b < 1 , then

dH(x, z) < dH(x, z)− 2 ln b = dH(i, bi) + dH(bi, βi) < dH(x, y) + dH(y, z).

If b > β, then

dH(x, z) < 2 ln b− dH(x, z) = dH(i, bi) + dH(bi, βi) < dH(x, y) + dH(y, z).

�

Proposition 4.3. Let f be a hyperbolic isometry and let l be a hyperbolic line, then
f(l) is also a hyperbolic line.

Proof. By Proposition 4.2, if y lies in the hyperbolic line segment lxz, then dH(x, y)+
dH(y, z) = dH(x, z). Since f preserves distance, dH(f(x), f(y)) + dH(f(y), f(z)) =
dH(f(x), f(z)). So f(y) lies in the hyperbolic segment lf(x)f(y) joining f(x) to f(y),
hence f(lxy)= lf(x)f(y). As a hyperbolic line can be expressed as a nested union of
hyperbolic line segments, we have that hyperbolic isometries take hyperbolic lines
to hyperbolic lines. �

Proposition 4.4. Let (z1, z2) and (w1, w2) be pairs of distinct points of H. If
dH(z1, z2) = dH(w1, w2), then there exists an element m of Möb(H) satisfying
m(z1) = w1 and m(z2) = w2.

Proof. We can construct p and q of Möb(H) such that q(z1) = p(w1) = i and
q(z2) = p(w2) = edH(z1,z2)i. So m = p−1 ◦ q satisfies m(z1) = w1 and m(z2) =
w2. �

Theorem 4.5. Let Isom(H, dH) denote the group of isometries of (H, dH), Then
Isom(H, dH)=Möb(H).

Proof. By Proposition 3.6, we have that Möb(H)⊂ Isom(H, dH). Then we show the
opposite inclusion using Proposition 4.3. Let f be a hyperbolic isometry and for
each pair of points p and q of H, let lpq be the hyperbolic line segment joining p to
q. Let l be the perpendicular bisector of lpq, in other words, l = {x ∈ H|dH(x, p) =
dH(x, q)}. Then f(l) is the perpendicular bisector of f(lpq) = lf(p)f(q). Now let
x and y be points on the positive imaginary axis I in H and let H be one of the
half-planes in H determined by I. By Proposition 4.4, there exists an element m
of Möb(H) such that m(f(x)) = x and m(f(y)) = y. Since m ◦ f fixes x and y,
m◦f takes I to I. If necessary, replace m by B ◦m with B(z) = −z̄ to have m also
take H to H. Let z be a point on I. As z is uniquely determined by two hyperbolic
distance dH(x, z) and dH(y, z) and as m ◦ f preserves hyperbolic distances, we have
that m ◦ f fixes every point of I. Let w be any point in H but not in I and let
l be the hyperbolic line through w perpendicular to I. So l is the hyperbolic line
contained in the Euclidean circle with Euclidean center 0 and Euclidean radius |w|.
Let z be the intersection of l and I. As l is the perpendicular bisector of some
hyperbolic line segment in I and as m ◦ f fixes every point in I, m ◦ f(l)=l. As
m ◦ f fixes z, as dH(z, w) = dH(m ◦ f(z),m ◦ f(w)) = dH(z,m ◦ f(w)), and as
m ◦ f preserves the two half-planes determined by I, we have that m ◦ f fixes w.
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Therefore m ◦ f is the identity. So f = m−1, hence f is an element of Möb(H).
Therefore Isom(H, dH)=Möb(H).

�
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